Intensity- and gradient-based stereo matching using hierarchical Gaussian basis functions

被引:60
|
作者
Wei, GQ
Brauer, W
Hirzinger, G
机构
[1] Siemens Corp Res Inc, Princeton, NJ 08540 USA
[2] German Aerosp Ctr, Inst Robot & Syst Dynam, D-82234 Oberpfaffenhofen, Germany
[3] Tech Univ Munich, Inst Informat, D-80290 Munich, Germany
关键词
stereo matching; intensity values; intensity gradients; deformation; scale-space; hierarchical Gaussians; ordering constraint; stochastic gradients; response difference compensation;
D O I
10.1109/34.730551
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a stereo correspondence method by minimizing intensity and gradient errors simultaneously. In contrast to conventional use of image gradients, the gradients are applied in the deformed image space. Although a uniform smoothness constraint is imposed, it is applied only to nonfeature regions. To avoid local minima in the function minimization, we propose to parameterize the disparity function by hierarchical Gaussians. Both the uniqueness and the ordering constraints can be easily imposed in our minimization framework. Besides, we propose a method to estimate the disparity map and the camera response difference parameters simultaneously. Experiments with various real stereo images show robust performances of our algorithm.
引用
收藏
页码:1143 / 1160
页数:18
相关论文
共 50 条
  • [1] Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization
    Jakobsson, S.
    Amoignon, O.
    COMPUTERS & FLUIDS, 2007, 36 (06) : 1119 - 1136
  • [2] STEREO MATCHING USING HIERARCHICAL BELIEF PROPAGATION ALONG AMBIGUITY GRADIENT
    Srivastava, Sumit
    Ha, Seong Jong
    Lee, Sang Hwa
    Cho, Nam Ik
    Lee, Sang Uk
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2085 - 2088
  • [3] Beyond Photometric Consistency: Gradient-based Dissimilarity for Improving Visual Odometry and Stereo Matching
    Quenzel, Jan
    Rosu, Radu Alexandru
    Laebe, Thomas
    Stachniss, Cyrill
    Behnke, Sven
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 272 - 278
  • [4] Validation for 2D/3D registration II: The comparison of intensity- and gradient-based merit functions using a new gold standard data set
    Gendrin, Christelle
    Markelj, Primoz
    Pawiro, Supriyanto Ardjo
    Spoerk, Jakob
    Bloch, Christoph
    Weber, Christoph
    Figl, Michael
    Bergmann, Helmar
    Birkfellner, Wolfgang
    Likar, Bostjan
    Pernus, Franjo
    MEDICAL PHYSICS, 2011, 38 (03) : 1491 - 1502
  • [5] Comprehensive Comparison of Gradient-Based Cross-Spectral Stereo Matching Generated Disparity Maps
    Picardo, Christopher B.
    Delva, Justin G. R.
    Bahar, R. Iris
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 200 - 204
  • [6] A Note on Gradient-Based Intensity Normalization
    Forero, Manuel G.
    Arias-Rubio, Carlos
    Horta-Junior, Jose de Anchieta C.
    Lopez, Dolores E.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 161 - 169
  • [7] Gradient based dense stereo matching
    Twardowski, T
    Cyganek, B
    Borgosz, J
    IMAGE ANALYSIS AND RECOGNITION, PT 1, PROCEEDINGS, 2004, 3211 : 721 - 728
  • [8] Gradient-based adaptation of general gaussian kernels
    Glasmachers, T
    Igel, C
    NEURAL COMPUTATION, 2005, 17 (10) : 2099 - 2105
  • [9] An improved gradient-based dense stereo correspondence algorithm using guided filter
    Han, Huiyan
    Han, Xie
    Yang, Fengbao
    OPTIK, 2014, 125 (01): : 115 - 120
  • [10] Modified gradient-based learning for local coupled feedforward neural networks with Gaussian basis function
    Qu, Yanpeng
    Shang, Changjing
    Yang, Jie
    Wu, Wei
    Shen, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 : S379 - S394