Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis

被引:65
|
作者
Duque De Pinho, Carolina Moutinho [1 ]
Garcia Fonseca, Leila Maria [1 ]
Korting, Thales Sehn [1 ]
De Almeida, Claudia Maria [1 ]
Heinrich Kux, Hermann Johann [1 ]
机构
[1] Natl Inst Space Res INPE, Sao Paulo, Brazil
关键词
URBAN; RECONSTRUCTION; RECOGNITION;
D O I
10.1080/01431161.2012.675451
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Detailed, up-to-date information on intra-urban land cover is important for urban planning and management. Differentiation between permeable and impermeable land, for instance, provides data for surface run-off estimates and flood prevention, whereas identification of vegetated areas enables studies of urban micro-climates. In place of maps, high-resolution images, such as those from the satellites IKONOS II, Quickbird, Orbview and WorldView II, can be used after processing. Object-based image analysis (OBIA) is a well-established method for classifying high-resolution images of urban areas. Despite the large number of previous studies of OBIA in the context of intra-urban analysis, there are many issues in this area that are still open to discussion and resolution. Intra-urban analysis using OBIA can be lengthy and complex because of the processing difficulties related to image segmentation, the large number of object attributes to be resolved and the many different methods needed to classify various image objects. To overcome these issues, we performed an experiment consisting of land-cover mapping based on an OBIA approach using an IKONOS II image of a southern sector of Sao Jose dos Campos city (covering an area of 12 km(2) with 50 neighbourhoods), which is located in Sao Paulo State in south-eastern Brazil. This area contains various occupation and land-use patterns, and it therefore contains a wide range of intra-urban targets. To generate the land-cover map, we proposed an OBIA-based processing framework that combines multi-resolution segmentation, data mining and hierarchical network techniques. The intra-urban land-cover map was then evaluated through an object-based error matrix, and classification accuracy indices were obtained. The final classification, with 11 classes, achieved a global accuracy of 71.91%.
引用
收藏
页码:5973 / 5995
页数:23
相关论文
共 50 条
  • [1] High-resolution urban land-cover classification using a competitive multi-scale object-based approach
    Johnson, Brian A.
    REMOTE SENSING LETTERS, 2013, 4 (02) : 131 - 140
  • [2] Object-Based High-Resolution Land-Cover Mapping Operational Considerations
    O'Neil-Dunne, Jarlath
    Pelletier, Keith
    MacFaden, Sean
    Troy, Austin
    Grove, J. Morgan
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 851 - +
  • [3] A review of supervised object-based land-cover image classification
    Ma, Lei
    Li, Manchun
    Ma, Xiaoxue
    Cheng, Liang
    Du, Peijun
    Liu, Yongxue
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 : 277 - 293
  • [4] Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery
    Zhang, Lei
    Jia, Kun
    Li, Xiaosong
    Yuan, Quanzhi
    Zhao, Xinfeng
    REMOTE SENSING LETTERS, 2014, 5 (01) : 73 - 82
  • [5] Hierarchical object-based image analysis of high-resolution imagery for urban land use classification
    Zhan, QM
    Molenaar, M
    Xiao, YH
    IEEE/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2001, : 35 - 39
  • [6] Object-Based Land-Cover Supervised Classification for Very-High-Resolution UAV Images Using Stacked Denoising Autoencoders
    Zhang, Xiaodong
    Chen, Guanzhou
    Wang, Wenbo
    Wang, Qing
    Dai, Fan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (07) : 3373 - 3385
  • [7] Land-Cover Classification With High-Resolution Remote Sensing Images Using Interactive Segmentation
    Xu, Leilei
    Liu, Yujun
    Shi, Shanqiu
    Zhang, Hao
    Wang, Dan
    IEEE ACCESS, 2023, 11 : 6735 - 6747
  • [8] Object-based urban land cover mapping using high-resolution airborne imagery and LiDAR data
    Li, Qingting
    Lu, Linlin
    Jiang, Hao
    Huang, Jinhua
    Liu, Zhaohua
    2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2018, : 28 - 32
  • [9] Object-based urban land cover classification using rule inheritance over very high-resolution multisensor and multitemporal data
    Hussain, Ejaz
    Shan, Jie
    GISCIENCE & REMOTE SENSING, 2016, 53 (02) : 164 - 182
  • [10] Urban land-cover classification: An object based perspective
    Darwish, A
    Leukert, K
    Reinhardt, W
    2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 278 - 282