Fair Feature Selection with a Lexicographic Multi-objective Genetic Algorithm

被引:1
|
作者
Brookhouse, James [1 ]
Freitas, Alex [1 ]
机构
[1] Univ Kent, Sch Comp, Canterbury, Kent, England
关键词
D O I
10.1007/978-3-031-14721-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is growing interest in learning from data classifiers whose predictions are both accurate and fair, avoiding discrimination against sub-groups of people based e.g. on gender or race. This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Fair Feature Selection (LGAFFS). LGAFFS selects a subset of relevant features which is optimised for a given classification algorithm, by simultaneously optimising one measure of accuracy and four measures of fairness. This is achieved by using a lexicographic multi-objective optimisation approach where the objective of optimising accuracy has higher priority over the objective of optimising the four fairness measures. LGAFFS was used to select features in a pre-processing phase for a random forest algorithm. The experiments compared LGAFFS' performance against two feature selection approaches: (a) the baseline approach of letting the random forest algorithm use all features, i.e. no feature selection in a pre-processing phase; and (b) a Sequential Forward Selection method. The results showed that LGAFFS significantly improved fairness measures in several cases, with no significant difference regarding predictive accuracy, across all experiments.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 50 条
  • [1] Multi-objective Genetic Algorithm Evaluation in Feature Selection
    Spolaor, Newton
    Lorena, Ana Carolina
    Lee, Huei Diana
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 462 - +
  • [2] Feature selection using multi-objective CHC genetic algorithm
    Rathee, Seema
    Ratnoo, Saroj
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1656 - 1664
  • [3] Feature subset selection via multi-objective genetic algorithm
    Lac, HC
    Stacey, DA
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1349 - 1354
  • [4] Multi-objective Genetic Algorithm setup for Feature Subset Selection in Clustering
    Kashyap, Himanshu
    Das, Sohini
    Bhattacharjee, Jayee
    Halder, Ritu
    Goswami, Saptarsi
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN INFORMATION TECHNOLOGY (RAIT), 2016, : 243 - 247
  • [5] Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach
    Oliveira, LS
    Sabourin, R
    Bortolozzi, F
    Suen, CY
    [J]. SEVENTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS I AND II, PROCEEDINGS, 2003, : 676 - 680
  • [6] An Approach on Multi-Objective Unsupervised Feature Selection Using Genetic Algorithm
    Khan, Rizwan Ahmed
    Mandwi, Indu
    [J]. 2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [7] Multi-objective genetic algorithm for feature selection in a protein function prediction context
    dos Santos, Bruno Cesar
    Nobre, Cristiane Neri
    Zarate, Luis Enrique
    [J]. 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2267 - 2274
  • [8] A Multi-objective Genetic Local Search Algorithm for Optimal Feature Subset Selection
    Tian, David
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1089 - 1094
  • [9] Attribute selection with a multi-objective genetic algorithm
    Pappa, GL
    Freitas, AA
    Kaestner, CAA
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2507 : 280 - 290
  • [10] LASSO multi-objective learning algorithm for feature selection
    Frederico Coelho
    Marcelo Costa
    Michel Verleysen
    Antônio P. Braga
    [J]. Soft Computing, 2020, 24 : 13209 - 13217