Monotonicity results for CFC nabla fractional differences with negative lower bound

被引:11
|
作者
Goodrich, Christopher S. S. [1 ]
Jonnalagadda, Jagan M. M. [2 ]
机构
[1] UNSW Sydney, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
Discrete fractional calculus; monotonicity; exponential kernel; sequential fractional difference; negative lower bound; CONVEXITY;
D O I
10.1515/anly-2021-0011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the sequential CFC-type nabla fractional difference (CFC del(nu)(a+1) CFC del(mu)(a)u)(t) and show that one can derive monotonicity-type results even in the case where this difference satisfies a strictly negative lower bound. This illustrates some dissimilarities between the integer-order and fractional- order cases.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [1] Sharp monotonicity results for fractional nabla sequential differences
    Goodrich, Christopher S.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) : 801 - 814
  • [2] Two monotonicity results for nabla and delta fractional differences
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 589 - 597
  • [3] ANALYTICAL AND NUMERICAL MONOTONICITY RESULTS FOR DISCRETE FRACTIONAL SEQUENTIAL DIFFERENCES WITH NEGATIVE LOWER BOUND
    Goodrich, Christopher S.
    Lyons, Benjamin
    Velcsov, Mihaela T.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 339 - 358
  • [4] Two monotonicity results for nabla and delta fractional differences
    Baoguo Jia
    Lynn Erbe
    Allan Peterson
    Archiv der Mathematik, 2015, 104 : 589 - 597
  • [5] Mixed order monotonicity results for sequential fractional nabla differences
    Dahal, Rajendra
    Goodrich, Christopher S.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (06) : 837 - 854
  • [6] Monotonicity Results for Nabla Riemann-Liouville Fractional Differences
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Balea, Itru
    Jan, Rashid
    Abualnaja, Khadijah M.
    MATHEMATICS, 2022, 10 (14)
  • [7] Monotonicity results for sequential fractional differences of mixed orders with negative lover bound
    Dahal, Rajendra
    Goodrich, Christopher S.
    Lyons, Benjamin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (11) : 1574 - 1593
  • [8] MONOTONICITY AND CONVEXITY FOR NABLA FRACTIONAL q-DIFFERENCES
    Jia Baoguo
    Erbe, Lynn
    Peterson, Allan
    DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (1-2): : 47 - 60
  • [9] Monotonicity and convexity for nabla fractional (q, h)-differences
    Du, Feifei
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (09) : 1224 - 1243
  • [10] Monotonicity Results for Delta and Nabla Caputo and Riemann Fractional Differences via Dual Identities
    Abdeljawad, Thabet
    Abdalla, Bahaaeldin
    FILOMAT, 2017, 31 (12) : 3671 - 3683