The Influence of Cloudiness on Hydrologic Fluctuations in the Mountains of the Western United States

被引:8
|
作者
Sumargo, Edwin [1 ]
Cayan, Daniel R. [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
RAIN-ON-SNOW; SOLAR-RADIATION; CLIMATE-CHANGE; CALIFORNIA DROUGHT; MEAN PRECIPITATION; WATER EQUIVALENT; SIERRA-NEVADA; TEMPERATURE; VARIABILITY; STREAMFLOW;
D O I
10.1029/2018WR022687
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates snowmelt and streamflow responses to cloudiness variability across the mountainous parts of the western United States. Twenty years (1996-2015) of Geostationary Operational Environmental Satellite-derived cloud cover indices (CC) with 4-km spatial and daily temporal resolutions are used as a proxy for cloudiness. The primary driver of nonseasonal fluctuations in daily mean solar insolation is the fluctuating cloudiness. We find that CC fluctuations are related to snowmelt and snow-fed streamflow fluctuations, to some extent (correlations of <0.5). Multivariate linear regression models of daily snowmelt (MELT) and streamflow (AQ) variations are constructed for each month from February to July, when snowmelt is most active. Predictors include CC from five antecedent days up to the current day. The CC-MELT and CC-AQ associations vary with time and location. The results show the dominance of negative correlations between CC and MELT, exemplifying the cloud-shading (or clear-sky) effect on snowmelt. The magnitude of the CC-MELT association (R-2) amounts to 5-61%, typically peaking in May. These associations fade earlier in summer during dry years than wet years, indicating the differing responses of thicker versus thinner snowpack. The CC-AQ association displays a less consistent pattern, with R-2 amounting to 2-47%. Nevertheless, MELT and AQ fluctuations exhibit spatially extensive patterns of correlations with daily cloudiness anomalies, indicating that the effects of cloudiness often operate over regional spatial scales. Plain Language Summary Much of the water supply in the western United States originates as mountain streams, which derive much of their water from snowmelt. The primary driver of mountain snowmelt is solar energy, and cloud cover regulates how much solar energy can reach the snow surface. Despite this fact, how snowmelt and streamflow respond to cloud cover (or its absence) has not been thoroughly studied. In our study, we describe snowmelt and streamflow responses to cloud cover using satellite images of cloud cover and surface records of snowmelt and streamflow. We find significant snowmelt and daily streamflow rate responses to cloud cover. Importantly, during the peak snowmelt season, snowmelt and streamflow decrease when cloud cover increases, and vice versa, confirming the cloud-shading effect on the snow surface. However, this cause-and-effect process is not so simple. We also find that cloud cover (or its absence) in the previous few days can affect how much snow melts and the streamflow rate is in a day. Snowmelt and streamflow responses to cloud cover are stronger, albeit shorter-lived, in dry years than in wet years, highlighting the relative importance of cloud cover in drier years.
引用
收藏
页码:8478 / 8499
页数:22
相关论文
共 50 条
  • [1] ENSO and hydrologic extremes in the western United States
    Cayan, DR
    Redmond, KT
    Riddle, LG
    [J]. JOURNAL OF CLIMATE, 1999, 12 (09) : 2881 - 2893
  • [2] Variability of Cloudiness over Mountain Terrain in the Western United States
    Sumargo, Edwin
    Cayan, Daniel R.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2017, 18 (05) : 1227 - 1245
  • [3] CLOUDINESS IN THE UNITED STATES
    Ward, Robert DeC.
    [J]. GEOGRAPHICAL REVIEW, 1920, 9 (04) : 347 - 356
  • [4] Hydrologic effects of logging in western Washington, United States
    Bowling, LC
    Storck, P
    Lettenmaier, DP
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (11) : 3223 - 3240
  • [5] SUNSHINE AND CLOUDINESS IN THE UNITED STATES
    Visher, Stephen S.
    [J]. SCIENTIFIC MONTHLY, 1944, 58 : 72 - 77
  • [6] Influence of topographic, geomorphic, and hydrologic variables on beaver dam height and persistence in the intermountain western United States
    Hafen, Konrad C.
    Wheaton, Joseph M.
    Roper, Brett B.
    Bailey, Philip
    Bouwes, Nicolaas
    [J]. EARTH SURFACE PROCESSES AND LANDFORMS, 2020, 45 (11) : 2664 - 2674
  • [7] A test bed for new seasonal hydrologic forecasting approaches in the western United States
    Wood, Andrew W.
    Lettenmaier, Dennis P.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (12) : 1699 - +
  • [8] INTERANNUAL VARIABILITY OF UNITED-STATES CLOUDINESS
    KANE, RP
    GOBBI, D
    [J]. ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1995, 13 (06): : 660 - 665
  • [9] Chinese Influence in the Development of Western United States
    Renner, George T.
    [J]. ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE, 1930, 152 : 356 - 369
  • [10] SARCOPTIC MANGE FOUND IN WOLVES IN THE ROCKY MOUNTAINS IN WESTERN UNITED STATES
    Jimenez, Michael D.
    Bangs, Edward E.
    Sime, Carolyn
    Asher, Valpa J.
    [J]. JOURNAL OF WILDLIFE DISEASES, 2010, 46 (04) : 1120 - 1125