Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets

被引:660
|
作者
Burillo, P [1 ]
Bustince, H [1 ]
机构
[1] UNIV PUBL NAVARA,DEPT MATEMAT & INFORMAT,E-31006 PAMPLONA,SPAIN
关键词
fuzzy set; intuitionistic entropy; distance; intuitionistic fuzzy set; Phi-fuzzy set;
D O I
10.1016/0165-0114(96)84611-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We recall the definitions of intuitionistic fuzzy sets and interval-valued fuzzy sets with the relation between these sets established by K. Atanassov. We define the distance measure between intuitionistic fuzzy sets and we give an axiom definition of intuitionistic fuzzy entropy and a theorem which characterizes it. Finally, we study a very special entropy and recall that all we have done for intuitionistic fuzzy sets is also good for interval-valued fuzzy sets.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 50 条
  • [1] Entropy on intuitionistic fuzzy soft sets and on interval-valued fuzzy soft sets
    Jiang, Yuncheng
    Tang, Yong
    Liu, Hai
    Chen, Zhenzhou
    [J]. INFORMATION SCIENCES, 2013, 240 : 95 - 114
  • [2] A Note on Interval-valued Fuzzy Rough Sets and Interval-valued Intuitionistic Fuzzy Sets
    Zhang, Q. S.
    Jiang, S. Y.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (03) : 553 - 561
  • [3] Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets
    Lee, KM
    Lee, KM
    Cios, KJ
    [J]. INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGIES : EXPLORING EMERGING TECHNOLOGIES, 2001, : 433 - 439
  • [4] Entropy of Dynamical Systems on Interval-Valued Intuitionistic Fuzzy Sets
    Nazari, Zohreh
    Mosapour, Batool
    Zangiabadi, Elham
    Ebrahimzadeh, Abolfazl
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (02) : 541 - 556
  • [5] Entropy and subsethood for general interval-valued intuitionistic fuzzy sets
    Liu, XD
    Zheng, SH
    Xiong, FL
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 1, PROCEEDINGS, 2005, 3613 : 42 - 52
  • [6] Entropy for Interval-Valued Fuzzy Sets
    Ju, Hong-mei
    [J]. FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 358 - 365
  • [7] Ranking of interval-valued intuitionistic fuzzy sets
    Nayagam, V. Lakshmana Gomathi
    Sivaraman, Geetha
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (04) : 3368 - 3372
  • [8] Topology of interval-valued intuitionistic fuzzy sets
    Mondal, TK
    Samanta, SK
    [J]. FUZZY SETS AND SYSTEMS, 2001, 119 (03) : 483 - 494
  • [9] Simplified interval-valued intuitionistic fuzzy sets with intuitionistic fuzzy numbers
    Ren, Peijia
    Xu, Zeshui
    Lei, Qian
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (05) : 2871 - 2882
  • [10] Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices
    Arieli, O
    Cornelis, C
    Deschrijver, G
    Kerre, EE
    [J]. APPLIED COMPUTATIONAL INTELLIGENCE, 2004, : 57 - 64