Experimental study of NOx formation in lean, premixed, prevaporized combustion of fuel oils at elevated pressures

被引:0
|
作者
Gokulakrishnan, P. [1 ]
Ramotowski, M. J. [1 ]
Gaines, G. [1 ]
Fuller, C. [1 ]
Joklik, R. [1 ]
Eskin, L. D. [1 ]
Klassen, M. S. [1 ]
Roby, R. J. [1 ]
机构
[1] Combust Sci & Engn Inc, Columbia, MD 21045 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Dry low Emissions (DLE) systems employing lean, premixed combustion have been successfully used with natural gas in combustion turbines to meet stringent emissions standards. However, the burning of liquid fuels in DLE systems is still a challenging task due to the complexities of fuel vaporization and air premixing. Lean, Premixed, Prevaporized (LPP) combustion has always provided the promise of obtaining low pollutant emissions while burning liquid fuels such as kerosene and fuel oil. Because of the short ignition delay times of these fuels at elevated temperatures, the autoignition of vaporized higher hydrocarbons typical of most practical liquid fuels has proven difficult to overcome when burning in lean, premixed mode. To avoid this autoignition problem, developers of LPP combustion systems have focused mainly on designing premixers and combustors that permit rapid mixing and combustion of fuels before spontaneous ignition of the fuel can occur. However, none of the reported works in the literature has looked at altering fuel combustion characteristics in order to delay the onset of ignition in lean, premixed combustion systems. The work presented in this paper describes the development of a patented low-NOx LPP system for combustion of liquid fuels which modifies the fuel rather than the combustion hardware in order to achieve LPP combustion. In the initial phase of the development, laboratory-scale experiments were performed to study the combustion characteristics, such as ignition delay time and NOx formation, of the liquids fuels that were vaporized into gaseous form in the presence of nitrogen diluent. In phase two, an LPP combustion system was commissioned to perform pilot-scale tests on commercial turbine combustor hardware. These pilot-scale tests were conducted at typical compressor discharge temperatures and at both atmospheric and high pressures. In this study, vaporization of the liquid fuel in an inert environment has been shown to be a viable method for delaying autoignition and for generating a gaseous fuel stream with characteristics similar to natural gas. Tests conducted in both atmospheric and high pressure combustor rigs utilizing swirl-stabilized burners designed for natural gas demonstrated operation similar to that obtained when burning natural gas. Emissions levels were similar for both the LPP fuels (fuel oil #1 and #2) and natural gas, with any differences ascribed to the fuel-bound nitrogen present in the liquid fuels. Extended lean operation was observed for the liquid fuels as a result of the wider lean flammability range for these fuels compared with natural gas. Premature ignition of the LPP fuel was controlled by the level of inert gas in the vaporization process.
引用
收藏
页码:441 / 449
页数:9
相关论文
共 50 条
  • [1] Experimental investigation of the prevaporized premixed (vpl) combustion process for liquid fuel lean combustion
    Wei, M
    Wang, YH
    Reh, L
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2002, 41 (02) : 157 - 164
  • [2] Experimental investigation of the liquid fuel evaporation in a premix duct for lean premixed and prevaporized combustion
    Brandt, M
    Gugel, KO
    Hassa, C
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1997, 119 (04): : 815 - 821
  • [3] Experimental study of lean premixed prevaporized combustion fluctuations in a gas turbine burner
    Allouis, C.
    Beretta, F.
    Amoresano, A.
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2008, 180 (05) : 900 - 909
  • [4] A novel low NOx lean, premixed, and prevaporized combustion system for liquid fuels
    Gokulakrishnan, P.
    Ramotowski, M. J.
    Gaines, G.
    Fuller, C.
    Joklik, R.
    Eskin, L. D.
    Klassen, M. S.
    Roby, R. J.
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2008, 130 (05):
  • [5] Numerical study of turbulent structures for lean premixed prevaporized combustion
    Bouras, F.
    [J]. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2014, 55 (04) : 614 - 626
  • [6] Numerical study of turbulent structures for lean premixed prevaporized combustion
    F. Bouras
    [J]. Journal of Applied Mechanics and Technical Physics, 2014, 55 : 614 - 626
  • [7] Experimental study of flow dynamics and fuel spray characteristics in Lean Premixed Prevaporized Combustor
    Yan Yingwen
    Dang Longfei
    Deng Yuanhao
    Li Jinghua
    Zhao Jianxing
    [J]. FUEL, 2015, 144 : 197 - 204
  • [8] Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures
    Ohtsuka, Masaya
    Yoshida, Shohei
    Hirata, Yoshitaka
    Kobayashi, Nariyoshi
    [J]. JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2009, 4 (01): : 74 - 85
  • [9] Flashback in lean prevaporized premixed combustion:: Nonswirling turbulent pipe flow study
    Schäfer, O
    Koch, R
    Wittig, S
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2003, 125 (03): : 670 - 676
  • [10] Variables affecting NOx formation in lean-premixed combustion
    Steele, RC
    Jarrett, AC
    Malte, PC
    Tonouchi, JH
    Nicol, DG
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1997, 119 (01): : 102 - 107