Feature extraction for cancer classification using kernel-based methods

被引:0
|
作者
Li, Shutao [1 ]
Liao, Chen [1 ]
机构
[1] Hunann Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
关键词
D O I
10.1007/978-3-540-74771-0_19
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, kernel-based feature extraction method from gene expression data is proposed for cancer classification. The performances of four kernel algorithms, namely, kernel Fisher discriminant analysis (KFDA), kernel principal component analysis (KPCA), kernel partial least squares (KPLS), and kernel independent component analysis (KICA), are compared on three benchmarked datasets: breast cancer, leukemia and colon cancer. Experimental results show that the proposed kernel-based feature extraction methods work well for three benchmark gene dataset. Overall, the KPLS and KFDA show the best performance, and KPCA and KICA follow them.
引用
收藏
页码:162 / +
页数:2
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Using Kernel-Based Nonparametric Weighted Feature Extraction
    Kuo, Bor-Chen
    Li, Cheng-Hsuan
    Sheu, Tian-Wei
    Liao, Hsueh-Hua
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 557 - +
  • [2] Kernel-Based Feature Extraction for Automated Gait Classification Using Kinetics Data
    Wu, Jianning
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2008, : 162 - 166
  • [3] A KERNEL-BASED FEATURE EXTRACTION METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hsieh, Pei-Jyun
    Li, Cheng-Hsuan
    Chen, Kai-Ching
    Kuo, Bor-Chen
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [4] Multiclass kernel-based feature extraction
    Zhao, Y
    Lia, HL
    Ahalt, S
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY IV, 2002, 4730 : 9 - 16
  • [5] Kernel-based relevant feature extraction to support motor imagery classification
    Arias-Mora, L.
    Lopez-Rios, L.
    Cespedes-Villar, Y.
    Velasquez-Martinez, L. F.
    Alvarez-Meza, A. M.
    Castellanos-Dominguez, G.
    [J]. 2015 20TH SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND COMPUTER VISION (STSIVA), 2015,
  • [6] Kernel-based discriminant feature extraction using a representative dataset
    Li, HL
    Sancho-Gómez, JL
    Ahalt, SC
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XI, 2002, 4729 : 352 - 363
  • [7] Texture classification using feature selection and kernel-based techniques
    Carlos Fernandez-Lozano
    Jose A. Seoane
    Marcos Gestal
    Tom R. Gaunt
    Julian Dorado
    Colin Campbell
    [J]. Soft Computing, 2015, 19 : 2469 - 2480
  • [8] Texture classification using feature selection and kernel-based techniques
    Fernandez-Lozano, Carlos
    Seoane, Jose A.
    Gestal, Marcos
    Gaunt, Tom R.
    Dorado, Julian
    Campbell, Colin
    [J]. SOFT COMPUTING, 2015, 19 (09) : 2469 - 2480
  • [9] Kernel-Based Feature Extraction For Collaborative Filtering
    Sathe, Saket
    Aggarwal, Charu C.
    Kong, Xiangnan
    Liu, Xinyue
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 1057 - 1062
  • [10] Modified kernel-based nonlinear feature extraction
    Dai, G
    Qian, YT
    Jia, S
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 721 - 724