On labeling the vertices of products of complete graphs with distance constraints

被引:14
|
作者
Erwin, DJ [1 ]
Georges, JP [1 ]
Mauro, DW [1 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
D O I
10.1002/nav.10080
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Variations of Hale's channel assignment problem, the L(j, k)-labeling problem and the radio labeling problem require the assignment of integers to the vertices of a graph G subject to various distance constraints. The lambda(j,k)-number of G and the radio number of G are respectively the minimum span among all L((j,k))-labelings, and the number span plus 1 of all radio labelings of G (defined in the Introduction). In this paper, we establish the lambda(j,k)-number of Pi(i)(a) = (1) K-1 for pairwise relatively prime integers t(1) < t(2) < ... < t(q), t(1) greater than or equal to 2. We also show the existence of an infinite class of graphs G with radio number [V(G)] for any diameter d(G). (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:138 / 141
页数:4
相关论文
共 50 条
  • [1] Labeling products of complete graphs with a condition at distance two
    Georges, JP
    Mauro, DW
    Stein, MI
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (01) : 28 - 35
  • [2] Labeling amalgamations of Cartesian products of complete graphs with a condition at distance two
    Karst, Nathaniel
    Oehrlein, Jessica
    Troxell, Denise Sakai
    Zhu, Junjie
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 101 - 108
  • [3] Labeling graphs with two distance constraints
    Chang, Hsun-Wen
    Chou, Huang-Wei
    Kuo, David
    Lin, Chun-Liang
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5645 - 5655
  • [4] Distance Magic Labeling and Two Products of Graphs
    Marcin Anholcer
    Sylwia Cichacz
    Iztok Peterin
    Aleksandra Tepeh
    Graphs and Combinatorics, 2015, 31 : 1125 - 1136
  • [5] Distance Magic Labeling and Two Products of Graphs
    Anholcer, Marcin
    Cichacz, Sylwia
    Peterin, Iztok
    Tepeh, Aleksandra
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1125 - 1136
  • [6] On the Ramsey numbers for complete distance graphs with vertices in {0,1}n
    Mikhailov, K. A.
    Raigorodskii, A. M.
    SBORNIK MATHEMATICS, 2009, 200 (11-12) : 1789 - 1806
  • [7] Distance Magic Labeling in Complete 4-partite Graphs
    Kotlar, Daniel
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1027 - 1038
  • [8] Distance Magic Labeling in Complete 4-partite Graphs
    Daniel Kotlar
    Graphs and Combinatorics, 2016, 32 : 1027 - 1038
  • [9] Distance two labelings of Cartesian products of complete graphs
    Lu, Damei
    Lin, Wensong
    Song, Zengmin
    ARS COMBINATORIA, 2012, 104 : 33 - 40
  • [10] Distance labeling in graphs
    Gavoille, C
    Peleg, D
    Pérennes, S
    Raz, R
    JOURNAL OF ALGORITHMS, 2004, 53 (01) : 85 - 112