Prospects for Parametric Amplifiers in Large-scale Superconducting Quantum Computing

被引:1
|
作者
Aumentado, Jose [1 ]
机构
[1] Natl Inst Stand & Technol, 325 Broadway MS686 05, Boulder, CO USA
关键词
microwave amplifiers; low-noise amplifiers; quantum computing; Josephson junctions; SQUIDs; superconducting microwave devices; cryogenic electronics;
D O I
10.1109/IMS37962.2022.9865444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fast, high-fidelity measurement of qubit states is critical for quantum computing, especially in superconducting qubits where real-time feedback is conditioned on the measurement of ancillary qubits for error correction. While the preamplifiers that we use for this purpose, superconducting parametric amplifiers, have played a transformative role in moving superconducting quantum information and computing forward, there is still much room for improvement. Here, we discuss several practical challenges in scaling these devices to meet the needs of large-scale quantum processing.
引用
收藏
页码:76 / 79
页数:4
相关论文
共 50 条
  • [1] Superconducting Computing in Large-Scale Hybrid Systems
    Holmes, D. Scott
    Kadin, Alan M.
    Johnson, Mark W.
    [J]. COMPUTER, 2015, 48 (12) : 34 - 42
  • [2] Large-scale computing with Quantum ESPRESSO
    Giannozzi, P.
    Cavazzoni, C.
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 49 - 52
  • [3] Optical transmission of microwave control signal towards large-scale superconducting quantum computing
    Li, Na
    Li, Yu-huai
    Fan, Dao-jin
    Han, Lian-chen
    Xu, Yu
    Lin, Jin
    Guo, Cheng
    Li, Dong-dong
    Gong, Ming
    Liao, Sheng-kai
    Zhu, Xiao-bo
    Peng, Cheng-zhi
    [J]. OPTICS EXPRESS, 2024, 32 (03) : 3989 - 3996
  • [4] A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing
    Bao, Zenghui
    Li, Yan
    Wang, Zhiling
    Wang, Jiahui
    Yang, Jize
    Xiong, Haonan
    Song, Yipu
    Wu, Yukai
    Zhang, Hongyi
    Duan, Luming
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Toward Control of Large-Scale Quantum Computing
    DiVincenzo, David P.
    [J]. SCIENCE, 2011, 334 (6052) : 50 - 51
  • [6] Modeling Enclosures for Large-Scale Superconducting Quantum Circuits
    Spring, P. A.
    Tsunoda, T.
    Vlastakis, B.
    Leek, P. J.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (02)
  • [7] Cryogenic Control Architecture for Large-Scale Quantum Computing
    Hornibrook, J. M.
    Colless, J. I.
    Lamb, I. D. Conway
    Pauka, S. J.
    Lu, H.
    Gossard, A. C.
    Watson, J. D.
    Gardner, G. C.
    Fallahi, S.
    Manfra, M. J.
    Reilly, D. J.
    [J]. PHYSICAL REVIEW APPLIED, 2015, 3 (02):
  • [8] Superconducting routing platform for large-scale integration of quantum technologies
    Thomas, C.
    Michel, J-P
    Deschaseaux, E.
    Charbonnier, J.
    Souil, R.
    Vermande, E.
    Campo, A.
    Farjot, T.
    Rodriguez, G.
    Romano, G.
    Gustavo, F.
    Jadot, B.
    Thiney, V
    Thonnart, Y.
    Billiot, G.
    Meunier, T.
    Vinet, M.
    [J]. MATERIALS FOR QUANTUM TECHNOLOGY, 2022, 2 (03):
  • [9] Optically driven nanostructures as the base for the large-scale quantum computing
    Tsukanov, Alexander V.
    [J]. QUANTUM INFORMATICS 2007, 2008, 7023
  • [10] Enabling Large-Scale Simulations of Quantum Transport with Manycore Computing
    Jeong, Yosang
    Ryu, Hoon
    [J]. ELECTRONICS, 2021, 10 (03) : 1 - 17