A hybrid stabilization approach for deep-space optical communications terminals

被引:24
|
作者
Burnside, Jamie W. [1 ]
Murphy, Daniel V.
Knight, Frederick K.
Khatri, Farzana I.
机构
[1] MIT, Lincoln Lab, Syst Engn Grp, Lexington, MA 02420 USA
[2] MIT, Lincoln Lab, Laser Technol & Appl Grp, Lexington, MA 02420 USA
[3] MIT, Lincoln Lab, Adv Space Syst & Concept Grp, Lexington, MA 02420 USA
[4] MIT, Lincoln Lab, Opt Commun Grp, Lexington, MA 02420 USA
基金
美国国家航空航天局;
关键词
communication systems; communication terminals; laser beam steering; optical communication; optical communication equipment; optical communication terminals; space technology; space vehicle communication;
D O I
10.1109/JPROC.2007.905101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Near-Earth laser communication system designs typically use the near-symmetric power levels in duplex links as bright sources upon which to base active beam stabilization. In deep space, it may be difficult to provide a constant, high-power laser beacon as a stabilization reference. we describe here several means, aimed at different frequency ranges of control, for generating a combined pointing reference and for actively controlling beam position. Such a blended approach gives a highly flexible system for performing beam stabilization in deep space, where distances, conditions, and power levels can vary widely.
引用
收藏
页码:2070 / 2081
页数:12
相关论文
共 50 条
  • [1] DEEP-SPACE OPTICAL COMMUNICATIONS
    BROOKNER, E
    KOLKER, M
    WILMOTTE, RM
    IEEE SPECTRUM, 1967, 4 (01) : 75 - &
  • [2] Deep-space Optical Terminals (DOT)
    Hemmati, H.
    Farr, W. H.
    Biswas, A.
    Birnbaum, K. M.
    Roberts, W. T.
    Quirk, K.
    Townes, S.
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXIII, 2011, 7923
  • [3] Precision location approach in deep-space optical communications
    Wang, Qiang
    Cui, Lei
    Zhao, Haochen
    Tan, Liying
    Ma, Jing
    APPLIED OPTICS, 2021, 60 (10) : 2854 - 2860
  • [4] INSTRUMENTATION FOR DEEP-SPACE OPTICAL COMMUNICATIONS
    LIPSETT, MS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (05) : 732 - &
  • [5] Performance analysis of hybrid MPAPM technique for deep-space optical communications
    Idris, Sadiq
    Selmy, Hossam
    Lopes, Waslon Terllizzie A.
    IET COMMUNICATIONS, 2021, 15 (13) : 1700 - 1709
  • [6] Compact deep-space optical communications transceiver
    Roberts, W. Thomas
    Charles, Jeffrey R.
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XXI, 2009, 7199
  • [7] Optical array receiver for deep-space communications
    Vilnrotter, V
    Lau, CW
    Srinivasan, M
    Mukai, R
    Andrews, K
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XVI, 2004, 5338 : 163 - 174
  • [8] DEEP-SPACE COMMUNICATIONS
    COOK, JS
    BELL LABORATORIES RECORD, 1970, 48 (07): : 213 - &
  • [9] A Study of Transmission Overhead of a Hybrid Bundle Retransmission Approach for Deep-Space Communications
    Zhou, Yu
    Wang, Ruhai
    Yang, Lei
    Liang, Jie
    Burleigh, Scott C.
    Zhao, Kanglian
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 3824 - 3839
  • [10] Adaptive optics for daytime deep-space optical communications
    Gladysz, Szymon
    Zepp, Andreas
    Bellossi, Raphael
    Segel, Max
    McDonald, Douglas
    Stein, Karin
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS XI, 2022, 12237