Using properties of random matrices for target factor analysis of sensor array data

被引:0
|
作者
Marth, M
Maier, D
Honerkamp, J
Rapp, M
机构
[1] Univ Freiburg, Freiburger Mat Forschungszentrum, FMF, D-79104 Freiburg, Germany
[2] Forschungszentrum Karlsruhe, Inst Instrumental Anal, D-76021 Karlsruhe, Germany
关键词
target factor analysis; pseudorank estimation; random matrix; eigenvalue probability distribution; chemical sensor array;
D O I
10.1002/(SICI)1099-128X(199807/08)12:4<249::AID-CEM512>3.0.CO;2-G
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Target factor analysis is an important issue in the analysis of sensor array data as it allows one to test whether measurements contain only the substances with which a chemical sensor system was calibrated. In this paper a new approach based on the properties of random matrices is presented. The problem is first transformed to a pseudorank estimation problem by forming a combined calibration-prediction data matrix. Then the largest eigenvalue of the estimated measurement error matrix of this matrix is compared with maximum values obtained from pure random matrices. The test is statistically exact and especially useful for sensor array data. The largest eigenvalue test is compared with Malinowski's F-test on simulated data and tested on real data from chemical sensor arrays. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Using properties of random matrices for target factor analysis of sensor array data
    Marth, M.
    Maier, D.
    Honerkamp, J.
    Rapp, M.
    Journal of Chemometrics, 12 (04): : 249 - 259
  • [2] Random matrices in data analysis
    Achlioptas, D
    MACHINE LEARNING: ECML 2004, PROCEEDINGS, 2004, 3201 : 1 - 7
  • [3] Random matrices in data analysis
    Achlioptas, D
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 1 - 7
  • [4] Multiple Sensor Bayesian Extended Target Tracking Fusion Approaches Using Random Matrices
    Vivone, Gemine
    Granstroem, Karl
    Braca, Paolo
    Willett, Peter
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 886 - 892
  • [5] A Bernoulli Filter for Extended Target Tracking Using Random Matrices in a UWB Sensor Network
    Eryildirim, Abdulkadir
    Guldogan, Mehmet Burak
    IEEE SENSORS JOURNAL, 2016, 16 (11) : 4362 - 4373
  • [6] Extended Target Tracking With a Lidar Sensor Using Random Matrices and a Virtual Measurement Model
    Hoher, Patrick
    Wirtensohn, Stefan
    Baur, Tim
    Reuter, Johannes
    Govaers, Felix
    Koch, Wolfgang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 228 - 239
  • [7] Estimation of Sensor Array Signal Model Parameters Using Factor Analysis
    Koutrouvelis, Andreas, I
    Hendriks, Richard C.
    Heusdens, Richard
    Jensen, Jesper
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [8] Compressive data aggregation in wireless sensor networks using sub-Gaussian random matrices
    Yu, Xiaohan
    Baek, Seung Jun
    2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2013, : 2103 - 2108
  • [9] Data analysis for a hybrid sensor array
    Pardo, M
    Kwong, LG
    Sberveglieri, G
    Brubaker, K
    Schneider, JF
    Penrose, WR
    Stetter, JR
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 106 (01): : 136 - 143
  • [10] Array Diagnosis From Far-Field Data Using the Theory of Random Partial Fourier Matrices
    Migliore, Marco Donald
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 : 745 - 748