MLB-LDLR: A MACHINE LEARNING MODEL FOR PREDICTING THE PATHOGENICITY OF LDL RECEPTOR MISSENSE VARIANTS

被引:0
|
作者
Larrea, A. [1 ]
Jebari-Benslaiman, S. [1 ]
Galicia, U. [1 ]
Benito, A. [1 ]
Arrasate, S. [1 ]
Cenarro, A. [2 ]
Civeira, F. [3 ]
Gonzalez, H. [1 ]
机构
[1] Biofisika Inst, Biochem & Mol Biol, Leioa, Spain
[2] Hosp Univ Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain
[3] Univ Zaragoza, Director Dept Med, Zaragoza, Spain
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
O005
引用
收藏
页码:E3 / E3
页数:1
相关论文
共 50 条
  • [1] MLb-LDLr A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
    Larrea-Sebal, Asier
    Benito-Vicente, Asier
    Fernandez-Higuero, Jose A.
    Jebari-Benslaiman, Shifa
    Galicia-Garcia, Unai
    Uribe, Kepa B.
    Cenarro, Ana
    Ostolaza, Helena
    Civeira, Fernando
    Arrasate, Sonia
    Gonzalez-Diaz, Humberto
    Martin, Cesar
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2021, 6 (11): : 815 - 827
  • [2] LYRUS: a machine learning model for predicting the pathogenicity of missense variants
    Lai, Jiaying
    Yang, Jordan
    Gamsiz Uzun, Ece D.
    Rubenstein, Brenda M.
    Sarkar, Indra Neil
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [3] Advancing Prediction of Pathogenicity of Familial Hypercholesterolemia LDL Receptor Commonest Variants With Machine Learning Models
    Santos, Raul D.
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2021, 6 (11): : 828 - 830
  • [4] Rhapsody: predicting the pathogenicity of human missense variants
    Ponzoni, Luca
    Penaherrera, Daniel A.
    Oltvai, Zoltan N.
    Bahar, Ivet
    BIOINFORMATICS, 2020, 36 (10) : 3084 - 3092
  • [5] Pathogenicity Prediction of GABAA Receptor Missense Variants
    Wang, Ya-Juan
    Vu, Giang H.
    Mu, Ting-Wei
    ISRAEL JOURNAL OF CHEMISTRY, 2024,
  • [6] Predicting pathogenicity of missense variants with weakly supervised regression
    Cao, Yue
    Sun, Yuanfei
    Karimi, Mostafa
    Chen, Haoran
    Moronfoye, Oluwaseyi
    Shen, Yang
    HUMAN MUTATION, 2019, 40 (09) : 1579 - 1592
  • [7] A Novel Machine Learning Based in silico Pathogenicity Predictor for Missense Variants in a Hematological Setting
    Hutter, Stephan
    Baer, Constance
    Walter, Wencke
    Kern, Wolfgang
    Haferlach, Claudia
    Haferlach, Torsten
    BLOOD, 2019, 134
  • [8] REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants
    Ioannidis, Nilah M.
    Rothstein, Joseph H.
    Pejaver, Vikas
    Middha, Sumit
    McDonnell, Shannon K.
    Baheti, Saurabh
    Musolf, Anthony
    Li, Qing
    Holzinger, Emily
    Karyadi, Danielle
    Cannon-Albright, Lisa A.
    Teerlink, Craig C.
    Stanford, Janet L.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan M.
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac J.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catalona, William J.
    Foulkes, William D.
    Mandal, Diptasri
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Bustamante, Carlos D.
    Schaid, Daniel J.
    Hastie, Trevor
    Ostrander, Elaine A.
    Bailey-Wilson, Joan E.
    Radivojac, Predrag
    Thibodeau, Stephen N.
    Whittemore, Alice S.
    Sieh, Weiva
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (04) : 877 - 885
  • [9] MVP predicts the pathogenicity of missense variants by deep learning
    Hongjian Qi
    Haicang Zhang
    Yige Zhao
    Chen Chen
    John J. Long
    Wendy K. Chung
    Yongtao Guan
    Yufeng Shen
    Nature Communications, 12
  • [10] MVP predicts the pathogenicity of missense variants by deep learning
    Qi, Hongjian
    Zhang, Haicang
    Zhao, Yige
    Chen, Chen
    Long, John J.
    Chung, Wendy K.
    Guan, Yongtao
    Shen, Yufeng
    NATURE COMMUNICATIONS, 2021, 12 (01)