PLOTCODER: Hierarchical Decoding for Synthesizing Visualization Code in Programmatic Context

被引:0
|
作者
Chen, Xinyun [1 ]
Gong, Linyuan [1 ]
Cheung, Alvin [1 ]
Song, Dawn [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Y Creating effective visualization is an important part of data analytics. While there are many libraries for creating visualizations, writing such code remains difficult given the myriad of parameters that users need to provide. In this paper, we propose the new task of synthesizing visualization programs from a combination of natural language utterances and code context. To tackle the learning problem, we introduce PLOTCODER, a new hierarchical encoder-decoder architecture that models both the code context and the input utterance. We use PLOTCODER to first determine the template of the visualization code, followed by predicting the data to be plotted. We use Jupyter notebooks containing visualization programs crawled from GitHub to train PLOTCODER. On a comprehensive set of test samples from those notebooks, we show that PLOTCODER correctly predicts the plot type of about 70% samples, and synthesizes the correct programs for 35% samples, performing 34.5% better than the baselines.
引用
收藏
页码:2169 / 2181
页数:13
相关论文
共 11 条
  • [1] Mapping Language to Code in Programmatic Context
    Iyer, Srinivasan
    Konstas, Ioannis
    Cheung, Alvin
    Zettlemoyer, Luke
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1643 - 1652
  • [2] Hierarchical decoding with latent context for image captioning
    Zhang, Jing
    Xie, Yingshuai
    Li, Kangkang
    Wang, Zhe
    Du, Wen
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03): : 2429 - 2442
  • [3] Hierarchical decoding with latent context for image captioning
    Jing Zhang
    Yingshuai Xie
    Kangkang Li
    Zhe Wang
    Wen Du
    [J]. Neural Computing and Applications, 2023, 35 : 2429 - 2442
  • [4] Visualization of attributed hierarchical structures in a spatiotemporal context
    Hadlak, S.
    Tominski, C.
    Schulz, H-J.
    Schumann, H.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010, 24 (10) : 1497 - 1513
  • [5] Hierarchical organization of context in the hippocampal episodic code
    Takahashi, Susumu
    [J]. ELIFE, 2013, 2
  • [6] Hierarchical Focus plus Context Heterogeneous Network Visualization
    Shi, Lei
    Liao, Qi
    Tong, Hanghang
    Hu, Yifan
    Zhao, Yue
    Lin, Chuang
    [J]. 2014 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2014, : 89 - 96
  • [7] <bold>SoftGUESS: Visualization and Exploration of Code Clones in Context</bold>
    Adar, Eytan
    Kim, Miryung
    [J]. ICSE 2007: 29TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2007, : 762 - +
  • [8] Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context
    Agrawal, Lakshya A.
    Kanade, Aditya
    Goyal, Navin
    Lahiri, Shuvendu K.
    Rajamani, Sriram K.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context
    Agrawal, Lakshya A.
    Goyal, Navin
    Kanade, Aditya
    Lahiri, Shuvendu K.
    Rajamani, Sriram K.
    [J]. Advances in Neural Information Processing Systems, 2023, 36
  • [10] Improved decoding of woven convolutional codes via hierarchical near-EEP code structure
    Huettinger, S
    Huber, J
    [J]. GLOBECOM '01: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2001, : 1068 - 1072