SnO2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes

被引:15
|
作者
Xu, Hui [1 ]
Wang, Dan [1 ]
Zhang, Wei [1 ]
Zhu, Jianfeng [1 ]
Zhang, Tong [2 ]
Guo, Xinli [1 ]
Zhang, Yao [1 ]
Sun, Zhengming [1 ]
Chen, Jian [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Metall Mat, Nanjing 211189, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Elect Sci & Engn, Nanjing, Jiangsu, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2018年 / 2卷 / 01期
关键词
CARBON-COATED SNO2/GRAPHENE; CYCLING STABILITY; STORAGE; NANOSHEETS; OXIDE; NANOPARTICLES; TEMPERATURE; COMPOSITES; FOAMS; LAYER;
D O I
10.1039/c7se00486a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnO2 nanorods (NRs) have been demonstrated as one of the potential candidates for high-performance lithium-ion battery anodes due to their unique structural features, high theoretical capacity, natural abundance and low cost of fabrication. However, they still suffer from the problem that their direct exposure to the electrolyte leads to the instability of the SEI layer, causing low coulombic efficiency, high ionic resistance and low electronic conductivity. In this study, SnO2 NRs were synthesized by a hydrothermal method, and then spatially confined within graphene sheets by a facile freeze-drying process. The as-fabricated architecture exhibits a full encapsulation arrangement with graphene sheets interlaced into an interconnected macroporous network, serving not only as a robust framework with accessible space for the electrolyte but also a physical barrier layer to prevent the SnO2 NRs from direct exposure to the electrolyte. Moreover, the SnO2 NRs can function as pillars to prevent the graphene sheets from restacking while preserving the highly robust structure and efficient electron and ion transport channels. Benefiting from the admirable synergistic effect between SnO2 NRs and graphene, the assembled electrode shows excellent cycle performance (1179.2 mA h g(-1) after 400 cycles at 1.0 A g(-1)) and rate capabilities (624.2 mA h g(-1) at 8.0 A g(-1); 458.4 mA h g(-1) at 16.0 A g(-1)).
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [1] CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes
    Wang, Qi
    Zhao, Jun
    Shan, Wanfei
    Xia, Xinbei
    Xing, Lili
    Xue, Xinyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 590 : 424 - 427
  • [2] Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes
    Chen, Lechen
    Ma, Xiaohang
    Wang, Mozhen
    Chen, Chunhua
    Ge, Xuewu
    ELECTROCHIMICA ACTA, 2016, 215 : 42 - 49
  • [3] Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes
    Zheng Jiao
    Renmei Gao
    Haihua Tao
    Shuai Yuan
    Laiqiang Xu
    Saisai Xia
    Haijiao Zhang
    Journal of Nanoparticle Research, 2016, 18
  • [4] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Shuhua Jiang
    Wenbo Yue
    Ziqi Gao
    Yu Ren
    Hui Ma
    Xinhua Zhao
    Yunling Liu
    Xiaojing Yang
    Journal of Materials Science, 2013, 48 : 3870 - 3876
  • [5] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [6] Preparation and performance of SnO2 nanoparticles encapsulated in carbon nanofibers as anodes for lithium-ion battery
    不详
    MATERIALS LETTERS, 2023, 352
  • [7] 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries
    Hu, Xiang
    Zeng, Guang
    Chen, Junxiang
    Lu, Canzhong
    Wen, Zhenhai
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4535 - 4542
  • [8] 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery
    Bai Xue-Jun
    Hou Min
    Liu Chan
    Wang Biao
    Cao Hui
    Wang Dong
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (02) : 377 - 385
  • [9] SnO2 nano-spheres/graphene hybrid for high-performance lithium ion battery anodes
    Liu, Jia
    Huang, Jiamu
    Hao, Longlong
    Liu, Hongdong
    Li, Xinlu
    CERAMICS INTERNATIONAL, 2013, 39 (08) : 8623 - 8627
  • [10] Hierarchical SnO2 hollow nanotubes as anodes for high performance lithium-ion battery
    Yang Liu
    Peng Zhang
    Yuxiong Xue
    Min Zhou
    Rongxing Cao
    Penghui Chen
    Xianghua Zeng
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 22944 - 22952