Generalized p-values and the multivariate Behrens-Fisher problem

被引:7
|
作者
Gamage, JK
机构
[1] 4520 Department of Mathematics, Illinois State University, Normal
关键词
D O I
10.1016/S0024-3795(96)00166-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tsui and Weerahandi (1989) defined generalized p-values for testing statistical hypothesis in the presence of nuisance parameters and applied to obtain an exact solution to the univariate Behrens-Fisher problem. Johnson and Weerahandi (1988) provided a Bayesian solution to the multivariate Behrens-Fisher problem. With the help of the Cauchy-Schwarz inequality we provide an upper bound for the generalized p-value for the multivariate case. Also we extend the result of Tsui and Weerahandi to present a second upper bound. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条