The Demyanov Metric for Convex, Bounded Sets and Existence of Lipschitzian Selectors

被引:0
|
作者
Lesniewski, Andrzej [1 ]
Rzezuchowski, Tadeusz [1 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
关键词
Convex and bounded sets; the Demyanov metric; the Hausdorff metric; linear selectors; MULTIFUNCTIONS; SELECTIONS; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that an alternative formula for the Demyanov metric permits to extend this metric to the family of convex, bounded sets which need not be closed. Existence of Lipschitzian, linear selectors is discussed.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 50 条
  • [1] THE COMPLETION OF THE SPACE OF CONVEX, BOUNDED SETS WITH RESPECT TO THE DEMYANOV METRIC
    Grzybowski, Jerzy
    Lesniewski, Andrzej
    Rzezchowski, Tadeusz
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 191 - 196
  • [2] The Demyanov metric and some other metrics in the family of convex sets
    Rzezuchowski, Tadeusz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06): : 2229 - 2239
  • [3] Numerical Computation for Demyanov Difference of Polyhedral Convex Sets
    Song, Chun-Ling
    Xia, Zun-Quan
    Chen, Zhen-Sheng
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 97 - +
  • [4] THE QUASIDIFFERENTIAL CALCULUS, SEPARATION OF CONVEX SETS AND THE DEMYANOV DIFFERENCE
    Grzybowski, J.
    Pallaschke, D.
    Urbanski, R.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (01): : 20 - 30
  • [5] On volumes of bounded convex sets
    Elster, Rosalind
    OPTIMIZATION, 2010, 59 (01) : 141 - 146
  • [6] PART METRIC IN CONVEX SETS
    BAUER, H
    BEAR, HS
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (01) : 15 - +
  • [7] Separation theorems for bounded convex sets of bounded operators
    Pichot, Mikael
    Seguin, Erik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 704 : 132 - 145
  • [8] On summands of closed bounded convex sets
    Grzybowski, J
    Przybycien, H
    Urbanski, R
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2002, 21 (04): : 845 - 850
  • [9] PROPERTIES OF LINEARLY BOUNDED CONVEX SETS AND INSERTABLE SETS
    COQUET, G
    DUPIN, JC
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1971, 57 (07): : 818 - &
  • [10] Closedness of bounded convex sets of asymmetric normed linear spaces and the Hausdorff quasi-metric
    Rodriguez-Lopez, Jesus
    Romaguera, Salvador
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 551 - 562