MLML2R: an R package for maximum likelihood estimation of DNA methylation and hydroxymethylation proportions

被引:7
|
作者
Kiihl, Samara F. [1 ]
Jose Martinez-Garrido, Maria [2 ]
Domingo-Relloso, Arce [2 ]
Bermudez, Jose [2 ]
Tellez-Plaza, Maria [3 ]
机构
[1] Univ Estadual Campinas, Dept Stat, BR-13083859 Campinas, SP, Brazil
[2] Univ Valencia, Dept Stat & Operat Res, E-46100 Valencia, Spain
[3] Hosp Clin Valencia, Inst Biomed Res, Valencia 46010, Spain
基金
巴西圣保罗研究基金会;
关键词
DNA hydroxymethylation; DNA methylation; Maximum likelihood; OXIDATIVE BISULFITE; BASE-RESOLUTION; 5-HYDROXYMETHYLCYTOSINE; 5-METHYLCYTOSINE;
D O I
10.1515/sagmb-2018-0031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accurately measuring epigenetic marks such as 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) at the single-nucleotide level, requires combining data from DNA processing methods including traditional (BS), oxidative (oxBS) or Tet-Assisted (TAB) bisulfite conversion. We introduce the R package MLML2R, which provides maximum likelihood estimates (MLE) of 5-mC and 5-hmC proportions. While all other available R packages provide 5-mC and 5-hmC MLEs only for the oxBS+BS combination, MLML2R also provides MLE for TAB combinations. For combinations of any two of the methods, we derived the pool-adjacent-violators algorithm (PAVA) exact constrained MLE in analytical form. For the three methods combination, we implemented both the iterative method by Qu et al. [Qu, J., M. Zhou, Q. Song, E. E. Hong and A. D. Smith (2013): "Mlml: consistent simultaneous estimates of dna methylation and hydroxymethylation," Bioinformatics, 29, 2645-2646.], and also a novel non iterative approximation using Lagrange multipliers. The newly proposed non iterative solutions greatly decrease computational time, common bottlenecks when processing high-throughput data. The MLML2R package is flexible as it takes as input both, preprocessed intensities from Infinium Methylation arrays and counts from Next Generation Sequencing technologies. The MLML2R package is freely available at https://CRAN. R-project.org/package=MLML2R.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] maxLik: A package for maximum likelihood estimation in R
    Henningsen, Arne
    Toomet, Ott
    [J]. COMPUTATIONAL STATISTICS, 2011, 26 (03) : 443 - 458
  • [2] maxLik: A package for maximum likelihood estimation in R
    Arne Henningsen
    Ott Toomet
    [J]. Computational Statistics, 2011, 26 : 443 - 458
  • [3] tmle: An R Package for Targeted Maximum Likelihood Estimation
    Gruber, Susan
    van der Laan, Mark J.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2012, 51 (13): : 1 - 35
  • [4] LogConcDEAD: An R Package for Maximum Likelihood Estimation of a Multivariate Log-Concave Density
    Cule, Madeleine
    Gramacy, Robert
    Samworth, Richard
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2009, 29 (02): : 1 - 20
  • [5] NScluster: An R Package for Maximum Palm Likelihood Estimation for Cluster Point Process Models Using OpenMP
    Tanaka, Ushio
    Saga, Masami
    Nakano, Junji
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (06): : 1 - 22
  • [6] cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models
    Bartolucci, Francesco
    Pigini, Claudia
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 78 (07): : 1 - 26
  • [7] MLEP: an R package for exploring the maximum likelihood estimates of penetrance parameters
    Yuki Sugaya
    [J]. BMC Research Notes, 5 (1)
  • [8] mle.tools: An R Package for Maximum Likelihood Bias Correction
    Mazucheli, Josmar
    Menezes, Andre Felipe B.
    Nadarajah, Saralees
    [J]. R JOURNAL, 2017, 9 (02): : 268 - 290
  • [9] BioMethyl: an R package for biological interpretation of DNA methylation data
    Wang, Yue
    Franks, Jennifer M.
    Whitfield, Michael L.
    Cheng, Chao
    [J]. BIOINFORMATICS, 2019, 35 (19) : 3635 - 3641
  • [10] stochprofML: stochastic profiling using maximum likelihood estimation in R
    Lisa Amrhein
    Christiane Fuchs
    [J]. BMC Bioinformatics, 22