Intensity inhomogeneity correction of SD-OCT data using macular flatspace

被引:5
|
作者
Lang, Andrew [1 ]
Carass, Aaron [1 ,2 ]
Jedynak, Bruno M. [3 ]
Solomon, Sharon D. [4 ]
Calabresi, Peter A. [5 ]
Prince, Jerry L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Portland State Univ, Dept Math & Stat, Portland, OR 97201 USA
[4] Johns Hopkins Sch Med, Dept Ophthalmol, Baltimore, MD 21287 USA
[5] Johns Hopkins Sch Med, Dept Neurol, Baltimore, MD 21287 USA
关键词
Optical coherence tomography; Retina; Intensity inhomogeneity correction; Macular flatspace; Registration; OPTICAL COHERENCE TOMOGRAPHY; RETINAL LAYER SEGMENTATION; AUTOMATIC SEGMENTATION; IMAGES; NONUNIFORMITY; MODEL;
D O I
10.1016/j.media.2017.09.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity in-homogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 50 条
  • [1] INTENSITY INHOMOGENEITY CORRECTION OF MACULAR OCT USING N3 AND RETINAL FLATSPACE
    Lang, Andrew
    Carass, Aaron
    Jedynak, Bruno M.
    Solomon, Sharon D.
    Calabresi, Peter A.
    Prince, Jerry L.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 197 - 200
  • [2] Evolution of Lamellar Macular Hole Using SD-OCT
    Deiro, A. Peroglio
    Bottoni, F.
    Orini, C.
    Cigada, M. V.
    Staurenghi, G.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [3] Evaluation of Macular Thickness by SD-OCT
    Lam, Hee Hong
    Khaw, Gideon Keat Ween
    Khang, Tsung Fei
    Subrayan, Visvaraja
    OPHTHALMOLOGY, 2012, 119 (01) : 197 - 198
  • [4] Macular Volume Swells in Multiple Sclerosis Patients on Fingolimod Using SD-OCT
    Nolan, Rachel
    Gelfand, Jeffrey
    Green, Ari
    NEUROLOGY, 2012, 78
  • [5] Reproducibility of Thickness Measurements of Macular Inner Retinal Layers Using SD-OCT With or Without Correction of Ocular Rotation
    Hirasawa, Hiroyo
    Araie, Makoto
    Tomidokoro, Atsuo
    Saito, Hitomi
    Iwase, Aiko
    Ohkubo, Shinji
    Sugiyama, Kazuhisa
    Ootani, Tomohiro
    Kishi, Shoji
    Matsushita, Kenji
    Maeda, Naoyuki
    Hangai, Masanori
    Yoshimura, Nagahisa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (04) : 2562 - 2570
  • [6] A longitudinal SD-OCT analysis of macular atrophy in the HARBOR trial
    Sadda, Srinivas R.
    Morgenthien, Elizabeth
    Gune, Shamika
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [7] RETINAL THICKNESS ESTIMATION FROM SD-OCT MACULAR SCANS
    Hammes, N.
    Racette, L.
    Samuels, B. C.
    Tsechpenakis, G.
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 213 - 217
  • [8] Automatic montage of SD-OCT data sets
    Li, Ying
    Gregori, Giovanni
    Lam, Byron L.
    Rosenfeld, Philip J.
    OPTICS EXPRESS, 2011, 19 (27): : 26239 - 26248
  • [9] Deep Features and Data Reduction for Classification of SD-OCT Images: Application to Diabetic Macular Edema
    Chan, Genevieve C. Y.
    Shah, Syed A. A.
    Tang, T. B.
    Lu, C. -K.
    Muller, H.
    Meriaudeau, F.
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEM (ICIAS 2018) / WORLD ENGINEERING, SCIENCE & TECHNOLOGY CONGRESS (ESTCON), 2018,
  • [10] Sensitivity and specificity of SS-OCT for detecting macular pathologies vs SD-OCT
    Yeu, Elizabeth
    Berdahl, John P.
    Gupta, Preeya K.
    Patterson, Michael
    JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2024, 50 (05): : 481 - 485