Quantify and account for field reference errors in forest remote sensing studies

被引:7
|
作者
Persson, Henrik Jan [1 ]
Ekstrom, Magnus [1 ,2 ]
Stahl, Goran [1 ]
机构
[1] Swedish Univ Agr Sci SLU, Dept Forest Resource Management, Umea, Sweden
[2] Umea Univ, Dept Stat, USBE, Umea, Sweden
关键词
Forest inventory; Uncertainty; Errors; Remote sensing; MODEL-BASED INFERENCE; NORWAY SPRUCE; BIOMASS; ACCURACY; UNCERTAINTY; VOLUME; TREE; SENSITIVITY; PERFORMANCE; PREDICTION;
D O I
10.1016/j.rse.2022.113302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Field inventoried data are often used as references (ground truth) in forest remote sensing studies. However, the reference values are affected by various kinds of errors, which tend to make the reported accuracies of the remote sensing-based predictions worse than they are. The more accurate the remote sensing techniques are becoming, the more pronounced this problem will be. This paper addresses the impact of uncertainties in field reference data due to measurement errors, model errors, and position errors when evaluating the accuracy of biomass predictions from airborne laser scanning at plot level. We present novel theoretical analysis methods that take the interactions of the error sources into account. Further, an error characterization model (ECM) is used to describe the error structure of the remote sensing-based predictions, and we show how the parameters of the ECM can be adjusted when field references contain errors. We also show how root mean square error (RMSE) estimates can be adjusted. Based on data from Scandinavian forests, we conclude that the field reference errors have an impact on the remote sensing-based predictions. By accounting for these errors the RMSE of the remote sensing-based predictions was reduced by 6-18%. The most influential sources of error in the field references were found to be the residual errors of the allometric biomass model and the field plot position errors. Together, these two sources accounted for 97% of the variance while measurement errors and biomass model parameter uncertainties were negligible in our study.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Geometric Errors of Remote Sensing Images Over Forest and Their Propagation to Bidirectional Studies
    Kempeneers, P.
    Bertels, L.
    Vreys, K.
    Biesemans, J.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (06) : 1459 - 1463
  • [2] Characterizing Uncertainty in Forest Remote Sensing Studies
    Persson, Henrik Jan
    Stahl, Goeran
    [J]. REMOTE SENSING, 2020, 12 (03)
  • [3] The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
    Schepaschenko, Dmitry
    Chave, Jerome
    Phillips, Oliver L.
    Lewis, Simon L.
    Davies, Stuart J.
    Rejou-Mechain, Maxime
    Sist, Plinio
    Scipal, Klaus
    Perger, Christoph
    Herault, Bruno
    Labriere, Nicolas
    Hofhansl, Florian
    Affum-Baffoe, Kofi
    Aleinikov, Alexei
    Alonso, Alfonso
    Amani, Christian
    Araujo-Murakami, Alejandro
    Armston, John
    Arroyo, Luzmila
    Ascarrunz, Nataly
    Azevedo, Celso
    Baker, Timothy
    Balazy, Radomir
    Bedeau, Caroline
    Berry, Nicholas
    Bilous, Andrii M.
    Bilous, Svitlana Yu.
    Bissiengou, Pulcherie
    Blanc, Lilian
    Bobkova, Kapitolina S.
    Braslavskaya, Tatyana
    Brienen, Roel
    Burslem, David F. R. P.
    Condit, Richard
    Cuni-Sanchez, Aida
    Danilina, Dilshad
    del Castillo Torres, Dennis
    Derroire, Geraldine
    Descroix, Laurent
    Sotta, Eleneide Doff
    d'Oliveira, Marcus V. N.
    Dresel, Christopher
    Erwin, Terry
    Evdokimenko, Mikhail D.
    Falck, Jan
    Feldpausch, Ted R.
    Foli, Ernest G.
    Foster, Robin
    Fritz, Steffen
    Damian Garcia-Abril, Antonio
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [4] Integrating Remote Sensing and Street View Images to Quantify Urban Forest Ecosystem Services
    Barbierato, Elena
    Bernetti, Iacopo
    Capecchi, Irene
    Saragosa, Claudio
    [J]. REMOTE SENSING, 2020, 12 (02)
  • [5] The Forest Observation System, building a global reference dataset for remote sensing of forest biomass
    Dmitry Schepaschenko
    Jérôme Chave
    Oliver L. Phillips
    Simon L. Lewis
    Stuart J. Davies
    Maxime Réjou-Méchain
    Plinio Sist
    Klaus Scipal
    Christoph Perger
    Bruno Herault
    Nicolas Labrière
    Florian Hofhansl
    Kofi Affum-Baffoe
    Alexei Aleinikov
    Alfonso Alonso
    Christian Amani
    Alejandro Araujo-Murakami
    John Armston
    Luzmila Arroyo
    Nataly Ascarrunz
    Celso Azevedo
    Timothy Baker
    Radomir Bałazy
    Caroline Bedeau
    Nicholas Berry
    Andrii M. Bilous
    Svitlana Yu. Bilous
    Pulchérie Bissiengou
    Lilian Blanc
    Kapitolina S. Bobkova
    Tatyana Braslavskaya
    Roel Brienen
    David F. R. P. Burslem
    Richard Condit
    Aida Cuni-Sanchez
    Dilshad Danilina
    Dennis del Castillo Torres
    Géraldine Derroire
    Laurent Descroix
    Eleneide Doff Sotta
    Marcus V. N. d’Oliveira
    Christopher Dresel
    Terry Erwin
    Mikhail D. Evdokimenko
    Jan Falck
    Ted R. Feldpausch
    Ernest G. Foli
    Robin Foster
    Steffen Fritz
    Antonio Damian Garcia-Abril
    [J]. Scientific Data, 6
  • [6] Comparative Analysis of Remote Sensing and Geo-Statistical Techniques to Quantify Forest Biomass
    Ahmad, Naveed
    Ullah, Saleem
    Zhao, Na
    Mumtaz, Faisal
    Ali, Asad
    Ali, Anwar
    Tariq, Aqil
    Kareem, Mariam
    Imran, Areeba Binte
    Khan, Ishfaq Ahmad
    Shakir, Muhammad
    [J]. FORESTS, 2023, 14 (02):
  • [7] Toward a forest biomass reference measurement system for remote sensing applications
    Labriere, Nicolas
    Davies, Stuart J.
    Disney, Mathias, I
    Duncanson, Laura, I
    Herold, Martin
    Lewis, Simon L.
    Phillips, Oliver L.
    Quegan, Shaun
    Saatchi, Sassan S.
    Schepaschenko, Dmitry G.
    Scipal, Klaus
    Sist, Plinio
    Chave, Jerome
    [J]. GLOBAL CHANGE BIOLOGY, 2023, 29 (03) : 827 - 840
  • [8] Using remote sensing to quantify the additional climate benefits of California forest carbon offset projects
    Coffield, Shane R.
    Vo, Cassandra D.
    Wang, Jonathan A.
    Badgley, Grayson
    Goulden, Michael L.
    Cullenward, Danny
    Anderegg, William R. L.
    Randerson, James T.
    [J]. GLOBAL CHANGE BIOLOGY, 2022, 28 (22) : 6789 - 6806
  • [9] Use of Remote Sensing and Field Data to Quantify the Performance and Resilience of Restored Louisiana Wetlands
    Glenn M. Suir
    Charles E. Sasser
    John M. Harris
    [J]. Wetlands, 2020, 40 : 2643 - 2658
  • [10] Combining national forest inventory field plots and remote sensing data for forest databases
    Tomppo, Erkki
    Olsson, Hakan
    Stahl, Goran
    Nilsson, Mats
    Hagner, Olle
    Katila, Matti
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) : 1982 - 1999