A proline-rich polypeptide (PRP), later called colostrinin (CLN), was originally found as a fraction accompanying sheep colostral immunoglobulins. Extensive in vitro and in vivo studies in mice revealed its interesting T cell-tropic activities. The polypeptide promoted T cell maturation from early thymic precursors that acquired the phenotype and function of mature, helper cells; on the other hand, it also affected the phenotype and function of mature T cells. In particular, PRP was shown to recruit suppressor T cells in a model of T cell-independent humoral immune response and suppressed autoimmune hemolytic anemia in New Zealand Black mice. Subsequent in vitro studies in the human model revealed that CLN regulated mitogen-induced cytokine production in whole blood cultures. A discovery that CLN promoted procognitive functions in experimental animal models, supported by other laboratory findings, indicating prevention of pathological processes in the central nervous system, led to application of CLN in multicenter clinical trials. The trials demonstrated the therapeutic benefit of CLN in Alzheimer's disease (AD) patients by delaying progress of the disease.