Chaotic binary particle swarm optimization for feature selection using logistic map

被引:0
|
作者
Chuang, Li-Yeh [1 ]
Li, Jung-Chike [2 ]
Yang, Cheng-Hong [2 ]
机构
[1] I Shou Univ, Dept Chem Engn, Kaohsiung, Taiwan
[2] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
关键词
feature selection; binary particle swarm optimization; logistic map; K-nearest neighbor; leave-one-out cross-validation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection is a useful technique for increasing classification accuracy. The primary objective is to remove irrelevant features in the feature space and identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully in solving feature selection problem. In this paper, chaotic binary particle swarm optimization (CBPSO) with logistic map for determining the inertia weight is used. The K-nearest neighbor (K-NN) method with leave-one-out cross-validation (LOOCV) serves as a classifier for evaluating classification. accuracies. Experimental results indicate that the proposed method not only reduces the number of features, but also achieves higher classification accuracy than other methods.
引用
收藏
页码:131 / +
页数:4
相关论文
共 50 条
  • [1] Chaotic Maps in Binary Particle Swarm Optimization for Feature Selection
    Yang, Cheng-San
    Chuang, Li-Yeh
    Li, Jung-Chike
    Yang, Cheng-Hong
    [J]. 2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 107 - +
  • [2] Feature Selection using Feature Ranking, Correlation Analysis and Chaotic Binary Particle Swarm Optimization
    Wang, Fei
    Yang, Yi
    Lv, Xianchao
    Xu, Jiao
    Li, Lian
    [J]. 2014 5TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2014, : 305 - 309
  • [3] Chaotic maps based on binary particle swarm optimization for feature selection
    Chuang, Li-Yeh
    Yang, Cheng-Hong
    Li, Jung-Chike
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (01) : 239 - 248
  • [4] Feature Subset Selection for Clustering using Binary Particle Swarm Optimization
    Dastider, Surjodoy Ghosh
    Kashyap, Himanshu
    Mandal, Shashwata
    Ghosh, Abhinandan
    Goswami, Saptarsi
    [J]. 2015 14TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2015), 2015, : 159 - 164
  • [5] Catfish Binary Particle Swarm Optimization for Feature Selection
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (IACSIT ICMLC 2009), 2009, : 40 - 44
  • [6] Boolean Binary Particle Swarm Optimization for Feature Selection
    Yang, Cheng-San
    Chuang, Li-Yeh
    Ke, Chao-Hsuan
    Yang, Cheng-Hong
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2093 - +
  • [7] Gene selection and classification using Taguchi chaotic binary particle swarm optimization
    Chuang, Li-Yeh
    Yang, Cheng-San
    Wu, Kuo-Chuan
    Yang, Cheng-Hong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 13367 - 13377
  • [8] Improved binary particle swarm optimization using catfish effect for feature selection
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12699 - 12707
  • [9] Feature selection using particle swarm optimization-based logistic regression model
    Qasim, Omar Saber
    Algamal, Zakariya Yahya
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 182 : 41 - 46
  • [10] An Improved Niching Binary Particle Swarm Optimization For Feature Selection
    Dong, Hongbin
    Sun, Jing
    Li, Tao
    Li, Lijie
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3571 - 3577