New Lorentz spaces for the restricted weak-type Hardy's inequalities

被引:3
|
作者
Martín, J [1 ]
Soria, J [1 ]
机构
[1] Autonomous Univ Barcelona, Dept Appl Math, E-08193 Barcelona, Spain
关键词
Hardy operator; Lorentz spaces; monotone functions; weighted inequalities;
D O I
10.1016/S0022-247X(02)00584-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Associated to the class of restricted weak-type weights for the Hardy operator R-p, we find a new class of Lorentz spaces for which the normability property holds. This result is analogous to the characterization given by Sawyer for the classical Lorentz spaces. We also show that these new spaces are very natural to study the existence of equivalent norms described in terms of the maximal function. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 50 条
  • [1] Lorentz spaces of weak-type
    Soria, J
    QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (193): : 93 - 103
  • [2] Weak-Type Boundedness of the Hardy–Littlewood Maximal Operator on Weighted Lorentz Spaces
    Elona Agora
    Jorge Antezana
    María J. Carro
    Journal of Fourier Analysis and Applications, 2016, 22 : 1431 - 1439
  • [3] Weak-Type Boundedness of the Hardy-Littlewood Maximal Operator on Weighted Lorentz Spaces
    Agora, Elona
    Antezana, Jorge
    Carro, Maria J.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1431 - 1439
  • [4] Weak-type weights and normable Lorentz spaces
    Carro, MJ
    DelAmo, AG
    Soria, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) : 849 - 857
  • [5] Weighted weak-type inequalities for generalized hardy operators
    Bernardis, A. L.
    Martin-Reyes, F. J.
    Salvador, P. Ortega
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [6] Weighted weak-type inequalities for generalized Hardy operators
    A. L. Bernardis
    F. J. Martín-Reyes
    P. Ortega Salvador
    Journal of Inequalities and Applications, 2006
  • [7] Weighted weak-type iterated and bilinear Hardy inequalities
    Garcia, V. Garcia
    Salvador, P. Ortega
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (02)
  • [8] Hardy-type inequalities on strong and weak Orlicz-Lorentz spaces
    Li HongLiang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (12) : 2493 - 2505
  • [9] Hardy-type inequalities on strong and weak Orlicz-Lorentz spaces
    LI HongLiang Department of Mathematics
    Science China Mathematics, 2012, 55 (12) : 2491 - 2503
  • [10] Hardy-type inequalities on strong and weak Orlicz-Lorentz spaces
    HongLiang Li
    Science China Mathematics, 2012, 55 : 2493 - 2505