Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat

被引:28
|
作者
Decker, KLM
Potter, CS
Bebout, BM
Des Marais, DJ
Carpenter, S
Discipulo, M
Hoehler, TM
Miller, SR
Thamdrup, B
Turk, KA
Visscher, PT
机构
[1] Calif State Univ Monterey Bay, Div Sci & Environm Policy, Moffett Field, CA 94035 USA
[2] NASA, Ames Res Ctr, Ecosyst Sci & Technol Branch, Moffett Field, CA 94035 USA
[3] NASA, Ames Res Ctr, Ecol Branch, Moffett Field, CA 94035 USA
[4] Orbital Corp, Moffett Field, CA 94035 USA
[5] SETI Inst, Mountain View, CA 94035 USA
[6] CNR, Washington, DC 20001 USA
[7] Univ So Denmark, Odense M, Denmark
[8] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[9] Univ Connecticut, Dept Marine Sci, Groton, CT 06304 USA
关键词
microbial mat; biogeochemistry; modeling; oxygen; sulfur; carbon Microcoleus chthonoplastes; cyanobacteria;
D O I
10.1016/j.femsec.2004.12.005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The creation of a mathematical simulation model of photosynthetic microbial mats is important to our understanding of key biogeochemical cycles that may have altered the atmospheres and lithospheres of early Earth. A model is presented here as a tool to integrate empirical results from research on hypersaline mats from Baja California Sur (BCS), Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. The first version of our model, presented here, calculates fluxes and cycling Of O-2, sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via four major microbial guilds: cyanobacteria (CYA), sulfate reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized Monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in BCS (Mexico). Model 02, sulfide, and DIC concentration profiles and fluxes compared well with data collected in the field mats. There were some model-predicted features of biogeochemical cycling not observed in our actual measurements. For instance, large influxes and effluxes of DIC across the MBGC mat boundary may reveal previously unrecognized, but real, in situ limits on rates of biogeochemical processes. Some of the short-term variation in field-collected mat 02 was not predicted by MBGC. This suggests a need both for more model sensitivity to small environmental fluctuations and for the incorporation of a photorespiration function into the model. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:377 / 395
页数:19
相关论文
共 38 条
  • [1] Biogeochemical cycling of C, O, and S in an iron rich hypersaline microbial mat
    Zopfi, J
    Wieland, A
    Kühl, M
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (15A) : A883 - A883
  • [2] Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France)
    Wieland, A
    Zopfi, J
    Benthien, A
    Kühl, M
    MICROBIAL ECOLOGY, 2005, 49 (01) : 34 - 49
  • [3] Biogeochemistry of an Iron-Rich Hypersaline Microbial Mat (Camargue, France)
    A. Wieland
    J. Zopfi
    M. Benthien
    M. Kühl
    Microbial Ecology, 2005, 49 : 34 - 49
  • [4] Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France)
    Desnues, Christelle
    Michotey, Valerie D.
    Wieland, Andrea
    Zhizang, Cui
    Fourcans, Aude
    Duran, Robert
    Bonin, Patricia C.
    WATER RESEARCH, 2007, 41 (15) : 3407 - 3419
  • [5] Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA
    Pages, Anais
    Welsh, David T.
    Teasdale, Peter R.
    Grice, Kliti
    Vacher, Michael
    Bennett, William W.
    Visscher, Pieter T.
    MARINE CHEMISTRY, 2014, 167 : 102 - 112
  • [6] Low-Light Anoxygenic Photosynthesis and Fe-S-Biogeochemistry in a Microbial Mat
    Haas, Sebastian
    de Beer, Dirk
    Klatt, Judith M.
    Fink, Artur
    Rench, Rebecca McCauley
    Hamilton, Trinity L.
    Meyer, Volker
    Kakuk, Brian
    Macalady, Jennifer L.
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [7] MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES
    DEWIT, R
    VANDENENDE, FP
    VANGEMERDEN, H
    FEMS MICROBIOLOGY ECOLOGY, 1995, 17 (02) : 117 - 135
  • [8] A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach
    Buehring, S. I.
    Smittenberg, R. H.
    Sachse, D.
    Lipp, J. S.
    Golubic, S.
    Sachs, J. P.
    Hinrichs, K. -U.
    Summons, R. E.
    GEOBIOLOGY, 2009, 7 (03) : 308 - 323
  • [9] MICROELECTRODE STUDIES OF THE PHOTOSYNTHESIS AND O-2, H2S, AND PH PROFILES OF A MICROBIAL MAT
    REVSBECH, NP
    JORGENSEN, BB
    BLACKBURN, TH
    COHEN, Y
    LIMNOLOGY AND OCEANOGRAPHY, 1983, 28 (06) : 1062 - 1074
  • [10] Mathematical description of crystallization of semikilled steel in Fe-C-O-Mn-Si-S-P system
    Selivanov, VN
    Stolyarov, AM
    Budanov, BA
    Kadigrob, AI
    STEEL IN TRANSLATION, 1997, 27 (09) : 45 - 49