Charge Storage Mechanism of RuO2/Water Interfaces

被引:16
|
作者
Watanabe, Eriko [1 ]
Ushiyama, Hiroshi [1 ]
Yamashita, Koichi [1 ]
Morikawa, Yusuke [1 ]
Asakura, Daisuke [2 ]
Okubo, Masashi [1 ]
Yamada, Atsuo [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, Tsukuba, Ibaraki 3058568, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 35期
关键词
RUTHENIUM DIOXIDE; ELECTRODE MATERIAL; SURFACE; OXIDE; SUPERCAPACITORS; BEHAVIOR; PSEUDOCAPACITANCE; PRINCIPLES; CAPACITORS; REDUCTION;
D O I
10.1021/acs.jpcc.7b02500
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacitive energy storage at the electrochemical double layer formed on a particle surface can enable efficient devices that deliver high power and exhibit excellent reversibility. However, even with state of the art nanocarbons with highly controlled morphology to maximize the specific surface area, the available energy density remains far below that of existing rechargeable batteries. Utilizing nanoparticles of transition metal oxides is a viable option to alleviate the conflict between energy and power densities by accommodating additional electrons around the surface transition metal sites, called "pseudocapacitance". However, an understanding of pseudocapacitive surfaces has been limited due to a lack of suitable analysis methodology. Here, we focus on the RuO2/water interface and elaborate on a reaction scheme including charge transfer into related surface orbitals using density functional theory calculations based on interfacial structures determined under a given electrode potential at a fixed pH of 0. The extensive contributions of the surface oxygen atoms and their surface-site dependence are revealed through the Ru-O orbital hybridization and O-H bond breaking/formation, largely deviating from the general explanation based only on the nominal valence states (penta-, tetra-, or trivalent) of Ru atoms.
引用
收藏
页码:18975 / 18981
页数:7
相关论文
共 50 条
  • [1] Correlation of the charge storage and magnetic susceptibility of hydrous RuO2
    Swider-Lyons, KE
    Bussmann, KM
    [J]. Solid State Ionics-2004, 2005, 835 : 51 - 56
  • [2] On the charge storage mechanism at RuO2/0.5 M H2SO4 interface
    K. Juodkazis
    J. Juodkazytė
    V. Šukienė
    A. Grigucevičienė
    A. Selskis
    [J]. Journal of Solid State Electrochemistry, 2008, 12 : 1399 - 1404
  • [3] On the charge storage mechanism at RuO2/0.5 M H2SO4 interface
    Juodkazis, K.
    Juodkazyte, J.
    Sukiene, V.
    Griguceviciene, A.
    Selskis, A.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (11) : 1399 - 1404
  • [4] Rethinking Pseudocapacitance: A Way to Harness Charge Storage of Crystalline RuO2
    Jadon, Ankita
    Prabhudev, Sagar
    Buvat, Gaetan
    Patnaik, Sai Gourang
    Djafari-Rouhani, Mehdi
    Esteve, Alain
    Guay, Daniel
    Pech, David
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) : 4144 - 4148
  • [5] THE POINT OF ZERO CHARGE OF HYDROUS RUO2
    ARDIZZONE, S
    DAGHETTI, A
    FRANCESCHI, L
    TRASATTI, S
    [J]. COLLOIDS AND SURFACES, 1989, 35 (01): : 85 - 96
  • [6] Probing the Electrochemical Reaction Mechanism and Crystallinity Effect of RuO2 for Sodium Storage
    Lu, Fan
    Liu, Shengzhou
    Zeng, Guifan
    Li, Jumei
    Yang, Yin
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) : A2897 - A2903
  • [7] Examination of RuO2 single-crystal surfaces:: charge storage mechanism in H2SO4 aqueous solution
    Doubova, LM
    Daolio, S
    De Battisti, A
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) : 25 - 33
  • [8] KINETICS AND MECHANISM OF CHLORINE DISCHARGE AND IONIZATION AT RUO2
    EVDOKIMOV, SV
    GORODETSKII, VV
    [J]. SOVIET ELECTROCHEMISTRY, 1986, 22 (07): : 920 - 923
  • [9] The synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2/PANI nanocomposites and their supercapacitors
    Murat Ates
    Murat Yildirim
    [J]. Polymer Bulletin, 2020, 77 : 2285 - 2307
  • [10] Mechanism of Benzene Tribopolymerization on the RuO2(110) Surface
    Yang, J.
    Qi, Y.
    Kim, H. D.
    Rappe, A. M.
    [J]. PHYSICAL REVIEW APPLIED, 2018, 9 (04):