A three-dimensional photonic crystal operating at infrared wavelengths

被引:991
|
作者
Lin, SY
Fleming, JG
Hetherington, DL
Smith, BK
Biswas, R
Ho, KM
Sigalas, MM
Zubrzycki, W
Kurtz, SR
Bur, J
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Iowa State Univ Sci & Technol, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA
关键词
D O I
10.1038/28343
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to confine and control light in three dimensions would have important implications for quantum optics and quantum-optical devices: the modification of black-body radiation, the localization of light to a fraction of a cubic wavelength, and thus the realization of single-mode light-emitting diodes, are but a few examples(1-3). Photonic crystals-the optical analogues of electronic crystal-provide a means for achieving these goals. Combinations of metallic and dielectric materials can be used to obtain the required three-dimensional periodic variations in dielectric constant, but dissipation due to free carrier absorption will limit application of such structures at the technologically useful infrared wavelengths(4), On the other hand, three-dimensional photonic crystals fabricated in low-loss gallium arsenide show only a weak 'stop band' (that is, range of frequencies at which propagation of light is forbidden) at the wavelengths of interest(5), Here we report the construction of a three-dimensional infrared photonic crystal on a silicon wafer using relatively standard microelectronics fabrication technology, Our crystal shows a large stop band (10-14.5 mu m), strong attenuation of light within this band (similar to 12 dB per unit cell) and a spectral response uniform to better than 1 per cent over the area of the 6-inch wafer.
引用
收藏
页码:251 / 253
页数:3
相关论文
共 50 条
  • [1] A three-dimensional photonic crystal operating at infrared wavelengths
    S. Y. Lin
    J. G. Fleming
    D. L. Hetherington
    B. K. Smith
    R. Biswas
    K. M. Ho
    M. M. Sigalas
    W. Zubrzycki
    S. R. Kurtz
    Jim Bur
    [J]. Nature, 1998, 394 : 251 - 253
  • [2] Three-dimensional silicon photonic crystal operates at infrared wavelengths
    不详
    [J]. LASER FOCUS WORLD, 1998, 34 (09): : 11 - 11
  • [3] Current status of three-dimensional silicon photonic crystals operating at infrared wavelengths
    Lin, SY
    Fleming, JG
    Sigalas, MM
    Biswas, R
    Ho, KM
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VIII, PTS 1 AND 2, 2000, 3944 : 688 - 693
  • [4] Effects of structural fluctuations on three-dimensional photonic crystals operating at near-infrared wavelengths
    Ogawa, S
    Tomoda, K
    Noda, S
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (01) : 513 - 515
  • [5] Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths
    Alexandra Ledermann
    Ludovico Cademartiri
    Martin Hermatschweiler
    Costanza Toninelli
    Geoffrey A. Ozin
    Diederik S. Wiersma
    Martin Wegener
    Georg von Freymann
    [J]. Nature Materials, 2006, 5 : 942 - 945
  • [6] Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths
    Ledermann, Alexandra
    Cademartiri, Ludovico
    Hermatschweiler, Martin
    Toninelli, Costanza
    Ozin, Geoffrey A.
    Wiersma, Diederik S.
    Wegener, Martin
    Von Freymann, Georg
    [J]. NATURE MATERIALS, 2006, 5 (12) : 942 - 945
  • [7] A three-dimensional photonic crystal operating in the visible region
    Park, SH
    Gates, B
    Xia, YN
    [J]. ADVANCED MATERIALS, 1999, 11 (06) : 462 - +
  • [8] Full three-dimensional photonic bandgap crystals at near-infrared wavelengths
    Noda, S
    Tomoda, K
    Yamamoto, N
    Chutinan, A
    [J]. SCIENCE, 2000, 289 (5479) : 604 - 606
  • [9] Nanofabricated three dimensional photonic crystals operating at optical wavelengths
    Cheng, CC
    ArbetEngels, V
    Scherer, A
    Yablonovitch, E
    [J]. PHYSICA SCRIPTA, 1996, T68 : 17 - 20
  • [10] Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths
    Imada, M
    Lee, LH
    Okano, M
    Kawashima, S
    Noda, S
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (17)