ON THE MULTIDIMENSIONAL NAZAROV LEMMA

被引:2
|
作者
Vasilyev, Ioann [1 ]
机构
[1] St Petersburg Dept VA Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
关键词
ADMISSIBLE MAJORANTS; MODEL SUBSPACES; H-2;
D O I
10.1090/proc/15805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a multidimensional version of the Nazarov lemma. The proof is based on an appropriate generalisation of the regularised system of intervals introduced by J. Mashreghi, F.L. Nazarov, and V.P. Khavin.
引用
收藏
页码:1601 / 1611
页数:11
相关论文
共 50 条
  • [1] MULTIDIMENSIONAL SINGULAR λ-LEMMA
    Rayskin, Victoria
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [2] A multidimensional version of Turan's lemma
    Fontes-Merz, Natacha
    JOURNAL OF APPROXIMATION THEORY, 2006, 140 (01) : 27 - 30
  • [3] A multidimensional Fatou lemma for conditional expectations
    Babaei, E.
    Evstigneev, I., V
    Schenk-Hoppe, K. R.
    POSITIVITY, 2021, 25 (04) : 1543 - 1549
  • [4] Multidimensional Watson lemma and its applications
    Rytova, A. I.
    Yarovaya, E. B.
    MATHEMATICAL NOTES, 2016, 99 (3-4) : 406 - 412
  • [5] Multidimensional Watson lemma and its applications
    A. I. Rytova
    E. B. Yarovaya
    Mathematical Notes, 2016, 99 : 406 - 412
  • [6] A multidimensional Fatou lemma for conditional expectations
    E. Babaei
    I. V. Evstigneev
    K. R. Schenk-Hoppé
    Positivity, 2021, 25 : 1543 - 1549
  • [7] A multidimensional real Schwarz Lemma for the Hilbert metric
    Leonardo Mora
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 25 - 43
  • [8] Multidimensional decay in the van der Corput lemma
    Ruzhansky, Michael
    STUDIA MATHEMATICA, 2012, 208 (01) : 1 - 10
  • [9] A multidimensional real Schwarz Lemma for the Hilbert metric
    Mora, Leonardo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (01): : 25 - 43
  • [10] On the Kalman–Yakubovich–Popov lemma and the multidimensional models
    Olivier Bachelier
    Wojciech Paszke
    Driss Mehdi
    Multidimensional Systems and Signal Processing, 2008, 19 : 425 - 447