FINITE MASS SELF-SIMILAR BLOWING-UP SOLUTIONS OF A CHEMOTAXIS SYSTEM WITH NON-LINEAR DIFFUSION

被引:10
|
作者
Blanchet, Adrien [1 ]
Laurencot, Philippe [2 ]
机构
[1] Univ Toulouse, GREMAQ, Toulouse Sch Econ, F-31000 Toulouse, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR 5219, F-31062 Toulouse 9, France
关键词
Backward self-similar solutions; blowup; chemotaxis; Patlak-Keller-Segel model; degenerate diffusion; KELLER-SEGEL MODEL; TIME AGGREGATION; GROUND-STATES; UNIQUENESS; EQUATIONS; R-2;
D O I
10.3934/cpaa.2012.11.47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a specific choice of the diffusion, the parabolic-elliptic Patlak-Keller-Segel system with non-linear diffusion (also referred to as the quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold phenomenon: there is a critical mass M(c) > 0 such that all solutions with initial data of mass smaller or equal to M(c) exist globally while the solution blows up in finite time for a large class of initial data with mass greater than M(c). Unlike in space dimension 2, finite mass self-similar blowing-up solutions are shown to exist in space dimension d >= 3.
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条