An Adaptive Hybrid Framework for Cross-domain Aspect-based Sentiment Analysis

被引:0
|
作者
Zhou, Yan [1 ]
Zhu, Fuqing [1 ]
Song, Pu [1 ,2 ]
Han, Jizhong [1 ]
Gu, Tao [1 ]
Hul, Songlin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain aspect-based sentiment analysis aims to utilize the useful knowledge in a source domain to extract aspect terms and predict their sentiment polarities in a target domain. Recently, methods based on adversarial training have been applied to this task and achieved promising results. In such methods, both the source and target data are utilized to learn domain-invariant features through deceiving a domain discriminator. However, the task classifier is only trained on the source data, which causes the aspect and sentiment information lying in the target data can not be exploited by the task classifier. In this paper, we propose an Adaptive Hybrid Framework (AHF) for cross-domain aspect-based sentiment analysis. We integrate pseudo-label based semi-supervised learning and adversarial training in a unified network. Thus the target data can be used not only to align the features via the training of domain discriminator, but also to refine the task classifier. Furthermore, we design an adaptive mean teacher as the semi-supervised part of our network, which can mitigate the effects of noisy pseudo labels generated on the target data. We conduct experiments on four public datasets and the experimental results show that our framework significantly outperforms the state-of-the-art methods.
引用
收藏
页码:14630 / 14637
页数:8
相关论文
共 50 条
  • [1] Bidirectional Generative Framework for Cross-domain Aspect-based Sentiment Analysis
    Deng, Yue
    Zhang, Wenxuan
    Pan, Sinno Jialin
    Bing, Lidong
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 12272 - 12285
  • [2] Cross-domain aspect-based sentiment classification with hybrid prompt
    Yuan, Shi
    Li, Meiqi
    Du, Yifei
    Xie, Yongle
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [3] A mutual mean teacher framework for cross-domain aspect-based sentiment analysis
    Fan Ouyang
    Bo Shen
    [J]. The Journal of Supercomputing, 2024, 80 : 9073 - 9095
  • [4] A Cross-Domain Generative Data Augmentation Framework for Aspect-Based Sentiment Analysis
    Xue, Jiawei
    Li, Yanhong
    Li, Zixuan
    Cui, Yue
    Zhang, Shaoqiang
    Wang, Shuqin
    [J]. ELECTRONICS, 2023, 12 (13)
  • [5] A mutual mean teacher framework for cross-domain aspect-based sentiment analysis
    Ouyang, Fan
    Shen, Bo
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (07): : 9073 - 9095
  • [6] Cross-Domain Review Generation for Aspect-Based Sentiment Analysis
    Yu, Jianfei
    Gong, Chenggong
    Xia, Rui
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 4767 - 4777
  • [7] Cross-domain aspect-based sentiment analysis using domain adversarial training
    Knoester, Joris
    Frasincar, Flavius
    Trusca, Maria Mihaela
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 4047 - 4067
  • [8] Cross-domain aspect-based sentiment analysis using domain adversarial training
    Joris Knoester
    Flavius Frasincar
    Maria Mihaela Truşcǎ
    [J]. World Wide Web, 2023, 26 : 4047 - 4067
  • [9] Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis
    Yu, Jianfei
    Zhao, Qiankun
    Xia, Rui
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1456 - 1470
  • [10] Cross-Domain Aspect-Based Sentiment Classification With Tripartite Graph Modeling
    Jiang, Xiaotong
    Bai, Ruirui
    Wang, Zhongqing
    Zhou, Guodong
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1623 - 1635