Applying Wikipedia-Based Explicit Semantic Analysis for Query-Biased Document Summarization

被引:0
|
作者
Zhou, Yunqing [1 ]
Guo, Zhongqi [1 ]
Ren, Peng [1 ]
Yu, Yong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200030, Peoples R China
关键词
query-biased summary; explicit semantic analysis; Wikipedia; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Query-bused summary is a query-centered document brief representation In in my scenarios, query-biased summarization can be accomplished by implementing query-customized ranking of sentences within the web page However it is a tough work to generate this summary since it is hard to consider the similarity between the query and the sentences of a particular document for lacking of information and background knowledge behind these short texts We focused on this problem and improved the summary generation effectiveness by involving semantic information in the machine learning process And we found these improvements are more significant when query term occurrences ate relatively low in the document
引用
收藏
页码:474 / 481
页数:8
相关论文
共 50 条
  • [1] Query-biased summarization based on lexical chaining
    Manabu, O
    Hajime, M
    [J]. COMPUTATIONAL INTELLIGENCE, 2000, 16 (04) : 578 - 585
  • [2] Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis
    Gabrilovich, Evgeniy
    Markovitch, Shaul
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1606 - 1611
  • [3] Utility of Missing Concepts in Query-biased Summarization
    Sarwar, Sheikh Muhammad
    Moraes, Felipe
    Jiang, Jiepu
    Allan, James
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2056 - 2060
  • [4] Query-biased summarization considering difference of paragraphs
    Otani C.
    Hoo M.K.
    Oda Y.
    Furue T.
    Uchida Y.
    Yoshie O.
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2010, 130 (12) : 2256 - 2265+21
  • [5] Wikipedia-Based Document Categorization
    Ciesielski, Krzysztof
    Borkowski, Piotr
    Klopotek, Mieczyslaw A.
    Trojanowski, Krzysztof
    Wysocki, Kamil
    [J]. SECURITY AND INTELLIGENT INFORMATION SYSTEMS, 2012, 7053 : 265 - 278
  • [6] Query-Biased Multi-document Abstractive Summarization via Submodular Maximization Using Event Guidance
    Sun, Rui
    Wang, Zhenchao
    Ren, Yafeng
    Ji, Donghong
    [J]. WEB-AGE INFORMATION MANAGEMENT, PT I, 2016, 9658 : 310 - 322
  • [7] Wikipedia-Based Query Performance Prediction
    Katz, Gilad
    Shtok, Anna
    Kurland, Oren
    Shapira, Bracha
    Rokach, Lior
    [J]. SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 1235 - 1238
  • [8] Efficient feature integration with Wikipedia-based semantic feature extraction for Turkish text summarization
    Guran, Aysun
    Bayazit, Nilgun Guler
    Gurbuz, Mustafa Zahid
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2013, 21 (05) : 1411 - 1425
  • [9] Query-Biased Self-Attentive Network for Query-Focused Video Summarization
    Xiao, Shuwen
    Zhao, Zhou
    Zhang, Zijian
    Guan, Ziyu
    Cai, Deng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5889 - 5899
  • [10] A WIKIPEDIA-BASED FRAMEWORK FOR COLLABORATIVE SEMANTIC ANNOTATION
    Fernandez, N.
    Fisteus, J. A.
    Fuentes, D.
    Sanchez, L.
    Luque, V.
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (05) : 847 - 886