Interfacial free energy anisotropy driven faceting of precipitates

被引:6
|
作者
Roy, Arijit [1 ]
Nani, E. S. [1 ,3 ]
Lahiri, Arka [2 ]
Gururajan, M. P. [1 ]
机构
[1] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay, Maharashtra, India
[2] Indian Inst Sci, Dept Mat Engn, Bengaluru, India
[3] Karlsruhe Inst Technol, Inst Appl Mat Computat Mat Sci, Karlsruhe, Germany
关键词
Phase field modelling; faceted precipitates; interfacial energy anisotropy; cubic anisotropy; hexagonal anisotropy; Wulff plot; PHASE-FIELD MODEL; CAHN-HILLIARD MODEL; DENDRITIC GROWTH; GRAIN-GROWTH; EVOLUTION; SIMULATION; MORPHOLOGY; ORIENTATION; THICKNESS; VECTOR;
D O I
10.1080/14786435.2017.1348633
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
During solid-solid precipitation, interface free energy anisotropy is known to drive faceting of precipitates. In this paper, using a recently developed phase field formulation based on higher order tensor terms, we develop and implement a family of phase field models and indicate the parameter choices which lead to faceted precipitate morphologies. We also indicate how to choose the parameters given either the known precipitate morphology or the interfacial free energy anisotropy. Specifically, we study the faceting of precipitates in systems with cubic and hexagonal anisotropies; in 2 and 3D implementation of our phase field model, the precipitates do show facets in accordance with the Wulff plot - including cases where the Wulff plot predicts facets made up of more than one family of planes. We also indicate the possible extensions of our model to study other problems of interest.
引用
收藏
页码:2705 / 2735
页数:31
相关论文
共 50 条
  • [1] Effect of interfacial free energy anisotropy on silicon whisker growth
    V. A. Nebol’sin
    A. A. Dolgachev
    B. A. Spiridonov
    E. V. Zotova
    Inorganic Materials, 2012, 48 : 757 - 762
  • [2] Effect of interfacial free energy anisotropy on silicon whisker growth
    Nebol'sin, V. A.
    Dolgachev, A. A.
    Spiridonov, B. A.
    Zotova, E. V.
    INORGANIC MATERIALS, 2012, 48 (08) : 757 - 762
  • [3] Phase Field Modelling of Morphologies Driven by Tetragonal Interfacial Energy Anisotropy
    Roy, Arijit
    Gururajan, M. P.
    CRYSTAL GROWTH & DESIGN, 2021, 21 (03) : 1591 - 1603
  • [4] The split of dendritic precipitates with interfacial anisotropy in solid transformations in alloys
    Liu, Lei
    Chen, Zheng
    Wang, Yongxin
    Zhang, Mingyi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 : 321 - 329
  • [5] Method for computing the anisotropy of the solid-liquid interfacial free energy
    Hoyt, JJ
    Asta, M
    Karma, A
    PHYSICAL REVIEW LETTERS, 2001, 86 (24) : 5530 - 5533
  • [6] Developments in determining the anisotropy of solid-liquid interfacial free energy
    J. R. Morris
    R. E. Napolitano
    JOM, 2004, 56 : 40 - 44
  • [7] Developments in determining the anisotropy of solid-liquid interfacial free energy
    Morris, JR
    Napolitano, RE
    JOM, 2004, 56 (04) : 40 - 44
  • [8] ANISOTROPY OF INTERFACIAL FREE ENERGY IN SOME HEXAGONAL CLOSE PACKED METALS
    CARPENTER, GJ
    CHADWICK, GA
    MILLER, WA
    JOURNAL OF METALS, 1968, 20 (01): : A30 - +
  • [9] Anisotropy of crystal-melt interfacial free energy of silicon by simulation
    Apte, Pankaj A.
    Zeng, X. C.
    APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [10] Extracting the interfacial free energy and anisotropy from a smooth fluctuating dividing surface
    Baldi, Edoardo
    Ceriotti, Michele
    Tribello, Gareth A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (44)