Bootstrapping Lasso Estimators

被引:164
|
作者
Chatterjee, A. [1 ]
Lahiri, S. N. [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Delhi 110016, India
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bootstrap variance estimation; Penalized regression; Regularization; Shrinkage; NONCONCAVE PENALIZED LIKELIHOOD; ASYMPTOTIC PROPERTIES; REGRESSION-MODELS; ORACLE PROPERTIES; ADAPTIVE LASSO; SELECTION; PERFORMANCE; JACKKNIFE; SHRINKAGE;
D O I
10.1198/jasa.2011.tm10159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider bootstrapping the Lasso estimator of the regression parameter in a multiple linear regression model. It is known that the standard bootstrap method fails to be consistent. Here, we propose a modified bootstrap method, and show that it provides valid approximation to the distribution of the Lasso estimator, for all possible values of the unknown regression parameter vector, including the case where some of the components are zero. Further, we establish consistency of the modified bootstrap method for estimating the asymptotic bias and variance of the Lasso estimator. We also show that the residual bootstrap can be used to consistently estimate the distribution and variance of the adaptive Lasso estimator. Using the former result, we formulate a novel data-based method for choosing the optimal penalizing parameter for the Lasso using the modified bootstrap. A numerical study is performed to investigate the finite sample performance of the modified bootstrap. The methodology proposed in the article is illustrated with a real data example.
引用
收藏
页码:608 / 625
页数:18
相关论文
共 50 条
  • [1] Bootstrapping LASSO-type estimators in regression models
    Giurcanu, Mihai
    Presnell, Brett
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 199 : 114 - 125
  • [2] Bootstrapping Whittle estimators
    Kreiss, J. P.
    Paparoditis, E.
    [J]. BIOMETRIKA, 2023, 110 (02) : 499 - 518
  • [3] Bootstrapping Extreme Value Estimators
    de Haan, Laurens
    Zhou, Chen
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 382 - 393
  • [4] ON BOOTSTRAPPING M-ESTIMATORS
    LAHIRI, SN
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 157 - 170
  • [5] Strong Consistency of Lasso Estimators
    Chatterjee, A.
    Lahiri, S. N.
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2011, 73 (01): : 55 - 78
  • [6] Strong consistency of Lasso estimators
    Chatterjee A.
    Lahiri S.N.
    [J]. Sankhya A, 2011, 73 (1): : 55 - 78
  • [7] Bootstrapping the Stein-Rule Estimators
    Namba, Akio
    [J]. JOURNAL OF QUANTITATIVE ECONOMICS, 2021, 19 (SUPPL 1) : 219 - 237
  • [8] Bootstrapping the Stein-Rule Estimators
    Akio Namba
    [J]. Journal of Quantitative Economics, 2021, 19 : 219 - 237
  • [9] BOOTSTRAPPING QUANTILE REGRESSION-ESTIMATORS
    HAHN, JY
    [J]. ECONOMETRIC THEORY, 1995, 11 (01) : 105 - 121
  • [10] Bootstrapping GMM estimators for time series
    Inoue, Atsushi
    Shintani, Mototsugu
    [J]. JOURNAL OF ECONOMETRICS, 2006, 133 (02) : 531 - 555