REA: Robust Cross-lingual Entity Alignment Between Knowledge Graphs

被引:35
|
作者
Pei, Shichao [1 ]
Yu, Lu [1 ]
Yu, Guoxian [1 ,2 ]
Zhang, Xiangliang [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
关键词
Knowledge Graph; Entity Alignment; Noise Detection;
D O I
10.1145/3394486.3403268
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-lingual entity alignment aims at associating semantically similar entities in knowledge graphs with different languages. It has been an essential research problem for knowledge integration and knowledge graph connection, and been studied with supervised or semi-supervised machine learning methods with the assumption of clean labeled data. However, labels from human annotations often include errors, which can largely affect the alignment results. We thus aim to formulate and explore the robust entity alignment problem, which is non-trivial, due to the deficiency of noisy labels. Our proposed method named REA (Robust Entity Alignment) consists of two components: noise detection and noise-aware entity alignment. The noise detection is designed by following the adversarial training principle. The noise-aware entity alignment is devised by leveraging graph neural network based knowledge graph encoder as the core. In order to mutually boost the performance of the two components, we propose a unified reinforced training strategy to combine them. To evaluate our REA method, we conduct extensive experiments on several real-world datasets. The experimental results demonstrate the effectiveness of our proposed method and also show that our model consistently outperforms the state-of-the-art methods with significant improvement on alignment accuracy in the noise-involved scenario.
引用
收藏
页码:2175 / 2184
页数:10
相关论文
共 50 条
  • [1] Embedding-Based Entity Alignment of Cross-Lingual Temporal Knowledge Graphs
    Bai, Luyi
    Li, Nan
    Li, Guishun
    Zhang, Ziyi
    Zhu, Lin
    [J]. NEURAL NETWORKS, 2024, 172
  • [2] Co-training Embeddings of Knowledge Graphs and Entity Descriptions for Cross-lingual Entity Alignment
    Chen, Muhao
    Tian, Yingtao
    Chang, Kai-Wei
    Skiena, Steven
    Zaniolo, Carlo
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3998 - 4004
  • [3] MRAEA: An Efficient and Robust Entity Alignment Approach for Cross-lingual Knowledge Graph
    Mao, Xin
    Wang, Wenting
    Xu, Huimin
    Lan, Man
    Wu, Yuanbin
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 420 - 428
  • [4] Adaptive Entity Alignment for Cross-Lingual Knowledge Graph
    Zhang, Yuanming
    Gao, Tianyu
    Lu, Jiawei
    Cheng, Zhenbo
    Xiao, Gang
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 : 474 - 487
  • [5] Enhancing Cross-Lingual Entity Alignment in Knowledge Graphs through Structure Similarity Rearrangement
    Liu, Guiyang
    Jin, Canghong
    Shi, Longxiang
    Yang, Cheng
    Shuai, Jiangbing
    Ying, Jing
    [J]. SENSORS, 2023, 23 (16)
  • [6] CAREA: Cotraining Attribute and Relation Embeddings for Cross-Lingual Entity Alignment in Knowledge Graphs
    Chen, Baiyang
    Chen, Xiaoliang
    Lu, Peng
    Du, Yajun
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [7] Embedding-based Two-Stage Entity Alignment for Cross-Lingual Knowledge Graphs *
    Sun, Yuxiang
    Lee, Yongju
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (02) : 317 - 339
  • [8] Entity Alignment for Cross-lingual Knowledge Graph with Graph Convolutional Networks
    Xiong, Fan
    Gao, Jianliang
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6480 - 6481
  • [9] SubGraph Networks Based Entity Alignment for Cross-Lingual Knowledge Graph
    Yu, Shanqing
    Zhang, Shihan
    Zhang, Jianlin
    Zhou, Jiajun
    Sun, Yun
    Li, Bing
    Xuan, Qi
    [J]. Communications in Computer and Information Science, 2022, 1640 CCIS : 114 - 128
  • [10] Guiding Cross-lingual Entity Alignment via Adversarial Knowledge Embedding
    Lin, Xixun
    Yang, Hong
    Wu, Jia
    Zhou, Chuan
    Wang, Bin
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 429 - 438