k-restricted edge-connectivity in triangle-free graphs

被引:9
|
作者
Holtkamp, Andreas [1 ]
Meierling, Dirk [2 ]
Pedro Montejano, Luis [3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math C, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
[3] Univ Politecn Cataluna, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
关键词
Triangle-free; k-restricted edge-connectivity; lambda(k)-optimal; Super-lambda(k); SUFFICIENT CONDITIONS;
D O I
10.1016/j.dam.2012.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a lambda(k)-connected graph. G is called lambda(k)-optimal, if its k-restricted edge-connectivity lambda(k)(G) equals its minimum k-edge degree. G is called super-lambda(k) if every lambda(k)-cut isolates a connected subgraph of order k. Firstly, we give a lower bound on the order of 2-fragments in triangle-free graphs that are not lambda(2)-optimal. Secondly, we present an Ore-type condition for triangle-free graphs to be lambda(3)-optimal. Thirdly, we prove a lower bound on the order of k-fragments in triangle-free lambda(k)-connected graphs, and use it to show that triangle-free graphs with high minimum degree are lambda(k)-optimal and super-lambda(k). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1345 / 1355
页数:11
相关论文
共 50 条
  • [1] The k-restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Marcote, X.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 52 - 59
  • [2] Sufficient conditions for triangle-free graphs to be super k-restricted edge-connected
    Yuan, Jun
    Liu, Aixia
    [J]. INFORMATION PROCESSING LETTERS, 2016, 116 (02) : 163 - 167
  • [3] On the complexity of computing the k-restricted edge-connectivity of a graph
    Montejano, Luis Pedro
    Sau, Ignasi
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 662 : 31 - 39
  • [4] On the Complexity of Computing the k-restricted Edge-connectivity of a Graph
    Montejano, Luis Pedro
    Sau, Ignasi
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2016, 9224 : 219 - 233
  • [5] Super 3-restricted edge connectivity of triangle-free graphs
    Guo, Litao
    Guo, Xiaofeng
    [J]. ARS COMBINATORIA, 2015, 121 : 159 - 173
  • [6] The Radius of a Triangle-Free Graph with Prescribed Edge-Connectivity
    Mukwembi, Simon
    [J]. UTILITAS MATHEMATICA, 2008, 77 : 135 - 144
  • [7] The k-restricted edge-connectivity of the data center network DCell
    Liu, Xuemei
    Meng, Jixiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 396
  • [8] The k-Restricted Edge Connectivity of Balanced Bipartite Graphs
    Jun Yuan
    Aixia Liu
    [J]. Graphs and Combinatorics, 2011, 27 : 289 - 303
  • [9] The k-Restricted Edge Connectivity of Balanced Bipartite Graphs
    Yuan, Jun
    Liu, Aixia
    [J]. GRAPHS AND COMBINATORICS, 2011, 27 (02) : 289 - 303
  • [10] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455