Quantum optimization for solving nonconvex problem

被引:0
|
作者
Yatsenko, VA [1 ]
机构
[1] NASU, Inst Space Res, UA-03022 Kiev, Ukraine
来源
关键词
optimization; control; lattice model; stochastic resonance; chaos; quantum processes; self organization;
D O I
10.1117/12.485658
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a quantum optimization problem and solid-state quantum computing architectures. Quantum approach to global optimization and NP-complete problems are considered. Our approach to global optimization based on quantum mechanical entanglement, quantum resonant tunneling, cellular automaton and geometric control methods. A quantum optimization algorithm combines the properties of classical simulated annealing with the possibility of quantum tunneling between the minima. Quantum computation exploits the property of quantum states to implement quantum parallelism for global nonconvex optimization problem. This paper considers new mathematical models of classical (CL) and quantum-mechanical lattices (QML). System-theoretic results on the observability, controllability and minimal realizability theorems are formulated for CL. The cellular dynamaton (CD) based on quantum oscillators is presented. We investigate the conditions when stochastic resonance can occur through the interaction of dynamical neurons with intrinsic deterministic noise and an external periodic control.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 50 条
  • [1] AIRCRAFT CONTROLLER SYNTHESIS BY SOLVING A NONCONVEX OPTIMIZATION PROBLEM
    SRICHANDER, R
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (02) : 382 - 384
  • [2] Canonical duality for solving nonconvex and nonsmooth optimization problem
    Liu, Jing
    Gao, David Y.
    Gao, Yan
    [J]. OPTIMIZATION AND ENGINEERING, 2009, 10 (02) : 153 - 165
  • [3] Canonical duality for solving nonconvex and nonsmooth optimization problem
    Jing Liu
    David Y. Gao
    Yan Gao
    [J]. Optimization and Engineering, 2009, 10 : 153 - 165
  • [4] Multistage Approach to Solving the Optimization Problem of Packing Nonconvex Polyhedra
    Stoyan, Y. G.
    Chugay, A. M.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2020, 56 (02) : 259 - 268
  • [5] Multistage Approach to Solving the Optimization Problem of Packing Nonconvex Polyhedra
    Y. G. Stoyan
    A. M. Chugay
    [J]. Cybernetics and Systems Analysis, 2020, 56 : 259 - 268
  • [6] Solving nonconvex optimization problems
    Henrion, D
    Lasserre, JB
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2004, 24 (03): : 72 - 83
  • [7] NONLINEAR NONCONVEX OPTIMIZATION PROBLEM
    WEIDNER, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (04): : 567 - 574
  • [8] Solving Nonconvex Trim Loss Problem using an Efficient Hybrid Particle Swarm Optimization
    Deep, Kusum
    Chauhan, Pinkey
    Bansal, Jagdish Chand
    [J]. 2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1607 - 1610
  • [9] Solving the Shipment Rerouting Problem with Quantum Optimization Techniques
    Yarkoni, Sheir
    Huck, Andreas
    Schuelldorf, Hanno
    Speitkamp, Benjamin
    Tabrizi, Marc Shakory
    Leib, Martin
    Baeck, Thomas
    Neukart, Florian
    [J]. COMPUTATIONAL LOGISTICS (ICCL 2021), 2021, 13004 : 502 - 517
  • [10] EXISTENCE OF SOLUTIONS TO PROBLEM OF NONCONVEX OPTIMIZATION
    BARANGER, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1973, 52 (04): : 377 - 405