Context-Aware Topic Modeling for Content Tracking in Social Media

被引:0
|
作者
Zhang, Jinjing [1 ]
Wang, Jing
Li, Li [1 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing, Peoples R China
来源
关键词
Topic model; Content evolution; Topic over time; Social media; DIRICHLET ALLOCATION;
D O I
10.1007/978-3-319-63579-8_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Content in social media is difficult to analyse because of its short and informal feature. Fortunately, some social media data like tweets have rich hashtags information, which can help identify meaningful topic information. More importantly, hashtags can express the context information of a tweet better. To enhance the significant effect of hashtags via topic variables, this paper, we propose a context-aware topic model to detect and track the evolution of content in social media by integrating hashtag and time information named hashtag-supervised Topic over Time (hsToT). In hsToT, a document is generated jointly by the existing words and hashtags (the hashtags are treated as topic indicators of the tweet). Experiments on real data show that hsToT capture hashtags distribution over topics and topic changes over time simultaneously. The model can detect the crucial information and track the meaningful content and topics successfully.
引用
收藏
页码:650 / 658
页数:9
相关论文
共 50 条
  • [1] Context-Aware Malware Detection Using Topic Modeling
    Stegner, Wayne
    Kapp, David
    Kebede, Temesguen
    Jha, Rashmi
    [J]. PROCEEDINGS OF THE 2021 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2021, : 326 - 331
  • [2] A Probabilistic Topic Approach for Context-Aware Visual Attention Modeling
    Fernandez-Torres, Miguel-Angel
    Gonzalez-Diaz, Ivan
    Diaz-de-Maria, Fernando
    [J]. 2016 14TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2016,
  • [3] A Temporal Context-Aware Model for User Behavior Modeling in Social Media Systems
    Yin, Hongzhi
    Cui, Bin
    Chen, Ling
    Hu, Zhiting
    Huang, Zi
    [J]. SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 1543 - 1554
  • [4] On modeling context-aware social collaboration processes
    Liptchinsky, Vitaliy
    Khazankin, Roman
    Schulte, Stefan
    Satzger, Benjamin
    Hong-Linh Truong
    Dustdar, Schahram
    [J]. INFORMATION SYSTEMS, 2014, 43 : 66 - 82
  • [5] DeepOpp: Context-aware Mobile Access to Social Media Content on Underground Metro Systems
    Wu, Di
    Arkhipov, Dmitri I.
    Przepiorka, Thomas
    Liu, Qiang
    McCann, Julie A.
    Regan, Amelia C.
    [J]. 2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 1219 - 1229
  • [6] Context-Aware Social Media User Sentiment Analysis
    Bo Liu
    Shijiao Tang
    Xiangguo Sun
    Qiaoyun Chen
    Jiuxin Cao
    Junzhou Luo
    Shanshan Zhao
    [J]. Tsinghua Science and Technology, 2020, 25 (04) : 528 - 541
  • [7] Context-Aware Social Media User Sentiment Analysis
    Liu, Bo
    Tang, Shijiao
    Sun, Xiangguo
    Chen, Qiaoyun
    Cao, Jiuxin
    Luo, Junzhou
    Zhao, Shanshan
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2020, 25 (04) : 528 - 541
  • [8] A local context-aware LDA model for topic modeling in a document network
    Liu, Yang
    Xu, Songhua
    [J]. JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2017, 68 (06) : 1429 - 1448
  • [9] Context-Aware Visual Tracking
    Yang, Ming
    Wu, Ying
    Hua, Gang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (07) : 1195 - 1209
  • [10] A Context-aware Media Content Personalized Recommendation for Community Networks
    Qin, Meng
    Yang, Qinghai
    Fu, Fenglin
    Kwak, Kyung Sup
    [J]. 2013 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2013), 2013,