Boltzmann equation in classical and quantum field theory

被引:66
|
作者
Jeon, SY
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA
来源
PHYSICAL REVIEW C | 2005年 / 72卷 / 01期
关键词
D O I
10.1103/PhysRevC.72.014907
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Improving upon the previous treatment by Mueller and Son, we derive the Boltzmann equation that results from a classical scalar field theory. This is obtained by starting from the corresponding quantum field theory and taking the classical limit with particular emphasis on the path integral and perturbation theory. A previously overlooked Van Vleck determinant is shown to control the tadpole type of self-energy that can still appear in the classical perturbation theory. Further comments on the validity of the approximations and possible applications are also given.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Boltzmann equation from quantum field theory
    Drewes, Marco
    Mendizabal, Sebastian
    Weniger, Christoph
    [J]. PHYSICS LETTERS B, 2013, 718 (03) : 1119 - 1124
  • [2] Out of equilibrium quantum field theory -: Perturbation, theory and generalized Boltzmann equation
    Niégawa, A
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1999, 102 (01): : 1 - 27
  • [3] On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers
    Mueller, AH
    Son, DT
    [J]. PHYSICS LETTERS B, 2004, 582 (3-4) : 279 - 287
  • [4] The Boltzmann equation in classical Yang–Mills theory
    V. Mathieu
    A. H. Mueller
    D. N. Triantafyllopoulos
    [J]. The European Physical Journal C, 2014, 74
  • [5] The Boltzmann equation in scalar field theory
    Brandt, FT
    Frenkel, J
    Guerra, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (24): : 4281 - 4288
  • [6] The Boltzmann equation in classical Yang-Mills theory
    Mathieu, V.
    Mueller, A. H.
    Triantafyllopoulos, D. N.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (05): : 1 - 15
  • [8] Quantum Boltzmann equation for strongly correlated systems: Comparison to dynamical mean field theory
    Wais, M.
    Eckstein, M.
    Fischer, R.
    Werner, P.
    Battiato, M.
    Held, K.
    [J]. PHYSICAL REVIEW B, 2018, 98 (13)
  • [9] DERIVATION AND CLASSICAL LIMIT OF THE MEAN-FIELD EQUATION FOR A QUANTUM COULOMB SYSTEM - MAXWELL BOLTZMANN STATISTICS
    ANGELESCU, N
    PULVIRENTI, M
    TETA, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (1-2) : 147 - 165
  • [10] Lattice Boltzmann method for quantum field theory
    Succi, Sauro
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (26) : F559 - F567