Evaluating an Improved Parameterization of the Soil Emission in L-MEB

被引:110
|
作者
Wigneron, Jean-Pierre [1 ]
Chanzy, Andre [2 ]
Kerr, Yann H. [3 ]
Lawrence, Heather [1 ,4 ]
Shi, Jiancheng [5 ]
Escorihuela, Maria Jose [6 ]
Mironov, Valery [7 ]
Mialon, Arnaud [3 ]
Demontoux, Francois [4 ]
de Rosnay, Patricia [8 ]
Saleh-Contell, Kauzar [3 ]
机构
[1] INRA, Ecol Fonct & Phys Environm EPHYSE UR1263, F-33140 Villenave Dornon, France
[2] INRA, Environm Mediterraneen & Modelisat Agrohydrosyst, F-84914 Avignon 9, France
[3] Ctr Etud Spatiales Biosphere CESBIO, F-31401 Toulouse, France
[4] Lab Integrat Mat Syst IMS, Bordeaux, France
[5] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[6] IsardSAT, Barcelona 08042, Spain
[7] Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[8] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England
来源
基金
俄罗斯基础研究基金会;
关键词
Microwave remote sensing; radiometry; roughness; soil moisture (SM); Soil Moisture and Ocean Salinity (SMOS); soil surface; BAND MICROWAVE EMISSION; SURFACE-ROUGHNESS; 1.4; GHZ; MODEL; MOISTURE; LAND; RADIOMETER; FREQUENCY; FIELDS; SPACE;
D O I
10.1109/TGRS.2010.2075935
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the forward model [L-band microwave emission of the biosphere (L-MEB)] used in the Soil Moisture and Ocean Salinity level-2 retrieval algorithm, modeling of the roughness effects is based on a simple semiempirical approach using three main "roughness" model parameters: H-R, Q(R), and N-R. In many studies, the two parameters Q(R) and N-R are set to zero. However, recent results in the literature showed that this is too approximate to accurately simulate the microwave emission of the rough soil surfaces at L-band. To investigate this, a reanalysis of the PORTOS-93 data set was carried out in this paper, considering a large range of roughness conditions. First, the results confirmed that Q(R) could be set to zero. Second, a refinement of the L-MEB soil model, considering values of N-R for both polarizations (namely, N-RV and N-RH), improved the model accuracy. Furthermore, simple calibrations relating the retrieved values of the roughness model parameters H-R and (N-RH - N-RV) to the standard deviation of the surface height were developed. This new calibration of L-MEB provided a good accuracy (better than 5 K) over a large range of soil roughness and moisture conditions of the PORTOS-93 data set. Conversely, the calibrations of the roughness effects based on the Choudhury approach, which is still widely used, provided unrealistic values of surface emissivities for medium or large roughness conditions.
引用
收藏
页码:1177 / 1189
页数:13
相关论文
共 50 条
  • [1] Evaluating an Improved Parameterization of the Soil Emission in L-MEB (vol 49, pg 1177, 2011)
    Wigneron, Jean-Pierre
    Chanzy, Andre
    Kerr, Yann H.
    Lawrence, Heather
    Shi, Jiancheng
    Jose Escorihuela, Maria
    Mironov, Valery
    Mialon, Arnaud
    Demontoux, Francois
    de Rosnay, Patricia
    Saleh-Contell, Kauzar
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 3200 - 3200
  • [2] Calibration of L-MEB for soil moisture retrieval over forests
    Grant, J. P.
    Wigneron, J. -P.
    de Griend, A. A. Van
    Guglielmetti, M.
    Saleh, K.
    Schwank, M.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2248 - +
  • [3] Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm
    Panciera, Rocco
    Walker, Jeffrey P.
    Kalma, Jetse D.
    Kim, Edward J.
    Saleh, Kauzar
    Wigneron, Jean-Pierre
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (02) : 435 - 444
  • [4] Global Sensitivity Analysis of the L-MEB Model for Retrieving Soil Moisture
    Wang, Zengyan
    Che, Tao
    Liou, Yuei-An
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05): : 2949 - 2962
  • [5] Calibration of the L-MEB model over a coniferous and a deciduous forest
    Grant, Jennifer P.
    Saleh-Contell, Kauzar
    Wigneron, Jean-Pierre
    Guglielmetti, Massimo
    Kerr, Yann H.
    Schwank, Mike
    Skou, Niels
    de Griend, Adriaan A. Van
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03): : 808 - 818
  • [6] Improved Characterization of Forest Transmissivity Within the L-MEB Model Using Multisensor SAR Data
    Seppanen, Jaakko
    Antropov, Oleg
    Jagdhuber, Thomas
    Hallikainen, Martti
    Heiskanen, Janne
    Praks, Jaan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1408 - 1412
  • [7] Analysis and Reduction of the Uncertainties in Soil Moisture Estimation With the L-MEB Model Using EFAST and Ensemble Retrieval
    Li, Dazhi
    Jin, Rui
    Zhou, Jian
    Kang, Jian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) : 1337 - 1341
  • [8] Evaluating the L-MEB Model From Long-Term Microwave Measurements Over a Rough Field, SMOSREX 2006
    Mialon, Arnaud
    Wigneron, Jean-Pierre
    de Rosnay, Patricia
    Jose Escorihuela, Maria
    Kerr, Yann H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1458 - 1467
  • [9] Calibration of the L-MEB Model for Croplands in HiWATER Using PLMR Observation†
    Yan, Shuang
    Jiang, Lingmei
    Chai, Linna
    Yang, Juntao
    Kou, Xiaokang
    [J]. REMOTE SENSING, 2015, 7 (08) : 10878 - 10897
  • [10] L-band Microwave Emission of the Biosphere (L-MEB) Model:: Description and calibration against experimental data sets over crop fields
    Wigneron, J.-P.
    Kerr, Y.
    Waldteufel, P.
    Saleh, K.
    Escorihuela, M.-J.
    Richaume, P.
    Ferrazzoli, P.
    de Rosnay, P.
    Gurney, R.
    Calvet, J.-C.
    Grant, J. P.
    Guglielmetti, M.
    Hornbuckle, B.
    Maetzler, C.
    Pellarin, T.
    Schwank, M.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 107 (04) : 639 - 655