Probabilistic Spatio-Temporal Fusion of Affordances for Grasping and Manipulation

被引:3
|
作者
Pohl, Christoph [1 ]
Asfour, Tamim [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76131 Karlsruhe, Germany
关键词
Perception for grasping and manipulation; probabilistic inference; semantic scene understanding;
D O I
10.1109/LRA.2022.3144794
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Robust vision-based grasping and manipulation of unknown objects in unstructured scenes requires the extraction of action candidates based on visual information while taking into account noise and occlusions in such scenes. We address this problem by combining the concept of affordances and Bayesian Recursive State Estimation. We propose to extract affordances using heuristics on the averaged local surface information of supervoxels in a point cloud. Based on a local, geometry-aware coordinate frame, we define a uniform state for different affordances. Using Bayesian statistics, this state is fused across multiple observations of the scene to improve the estimates for the pose and existence certainty of actions. This facilitates the extraction of robust grasping and manipulation actions independent of the segmentation of a scene. The proposed approach is evaluated in grasping experiments with more than 900 grasp executions using the humanoid robot ARMAR-6 in an unstructured scene with a variable number of unknown objects. The experimental results show that the grasping success rate is improved by over 10% compared to a state-of-the-art approach.
引用
收藏
页码:3226 / 3233
页数:8
相关论文
共 50 条
  • [1] Spatio-Temporal Modeling of Grasping Actions
    Romero, Javier
    Feix, Thomas
    Kjellstrom, Hedvig
    Kragic, Danica
    [J]. IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [2] Physically Grounded Spatio-temporal Object Affordances
    Koppula, Hema S.
    Saxena, Ashutosh
    [J]. COMPUTER VISION - ECCV 2014, PT III, 2014, 8691 : 831 - 847
  • [3] Probabilistic spatio-temporal resource search
    Qing Guo
    Ouri Wolfson
    [J]. GeoInformatica, 2018, 22 : 75 - 103
  • [4] Probabilistic spatio-temporal resource search
    Guo, Qing
    Wolfson, Ouri
    [J]. GEOINFORMATICA, 2018, 22 (01) : 75 - 103
  • [5] Simultaneous spatio-temporal focusing for tissue manipulation
    Squier, J.
    Block, E.
    Greco, M.
    Motz, A. Allende
    Durfee, C.
    Masihzadeh, O.
    Ammar, D.
    Kahook, M.
    Mandava, N.
    [J]. PROGRESS IN ULTRAFAST LASER MODIFICATIONS OF MATERIALS, 2013, 8
  • [6] On the Effect of Misregistration on Spatio-temporal Fusion
    Tang, Yijie
    Wang, Qunming
    [J]. 2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [7] A Spatio-Temporal Model for the Manipulation of Lineage Metadata
    Laurent Spéry
    Christophe Claramunt
    Thérèse Libourel
    [J]. GeoInformatica, 2001, 5 : 51 - 70
  • [8] A spatio-temporal model for the manipulation of lineage metadata
    Spéry, L
    Claramunt, C
    Libourel, T
    [J]. GEOINFORMATICA, 2001, 5 (01) : 51 - 70
  • [9] Integrity constraints for probabilistic spatio-temporal knowledgebases
    Parisi, Francesco
    Grant, John
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8720 : 251 - 264
  • [10] Spatio-Temporal Clustering of Probabilistic Region Trajectories
    Galasso, Fabio
    Iwasaki, Masahiro
    Nobori, Kunio
    Cipolla, Roberto
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1738 - 1745