Hierarchical 3D electrodes for electrochemical energy storage

被引:611
|
作者
Sun, Hongtao [1 ,2 ]
Zhu, Jian [3 ,4 ]
Baumann, Daniel [1 ]
Peng, Lele [1 ]
Xu, Yuxi [5 ]
Shakir, Imran [6 ]
Huang, Yu [7 ,8 ]
Duan, Xiangfeng [1 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90024 USA
[2] New Jersey Inst Technol, Dept Mech & Ind Engn, Newark, NJ 07102 USA
[3] Hunan Univ, Coll Chem & Chem Engn, Hunan Key Lab Two Dimens Mat, Changsha, Hunan, Peoples R China
[4] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha, Hunan, Peoples R China
[5] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai, Peoples R China
[6] King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh, Saudi Arabia
[7] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA
[8] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
CONDUCTIVE POLYMER GELS; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE; HOLEY-GRAPHENE; HIGH-POWER; MESOPOROUS GRAPHENE; STRUCTURAL DESIGN; BLOCK-COPOLYMERS; OXYGEN REDUCTION; DOPED GRAPHENE;
D O I
10.1038/s41578-018-0069-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (<= 1 mg cm(-2)) and is difficult to realize in commercial electrodes with higher mass loadings (>10 mg cm(-2)). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 50 条
  • [1] Hierarchical 3D electrodes for electrochemical energy storage
    Hongtao Sun
    Jian Zhu
    Daniel Baumann
    Lele Peng
    Yuxi Xu
    Imran Shakir
    Yu Huang
    Xiangfeng Duan
    [J]. Nature Reviews Materials, 2019, 4 : 45 - 60
  • [2] 3D Architected Carbon Electrodes for Energy Storage
    Narita, Kai
    Citrin, Michael A.
    Yang, Heng
    Xia, Xiaoxing
    Greer, Julia R.
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (05)
  • [3] 3D printing technologies for electrochemical energy storage
    Zhang, Feng
    Wei, Min
    Viswanathan, Vilayanur V.
    Swart, Benjamin
    Shao, Yuyan
    Wu, Gang
    Zhou, Chi
    [J]. NANO ENERGY, 2017, 40 : 418 - 431
  • [4] 3D electrodes with nanocarbon for energy storage and microbial energy conversion
    Cui, Yi
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] 3D printed electrochemical energy storage devices
    Chang, Peng
    Mei, Hui
    Zhou, Shixiang
    Dassios, Konstantinos G.
    Cheng, Laifei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) : 4230 - 4258
  • [6] 3D direct writing fabrication of electrodes for electrochemical storage devices
    Wei, Min
    Zhang, Feng
    Wang, Wei
    Alexandridis, Paschalis
    Zhou, Chi
    Wu, Gang
    [J]. JOURNAL OF POWER SOURCES, 2017, 354 : 134 - 147
  • [7] Hybrid Manufacturing of 3D Hierarchical Porous Carbons for Electrochemical Storage
    Wang, Panfeng
    Zhang, Hao
    Wang, Huizhi
    Li, Dawei
    Xuan, Jin
    Zhang, Li
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (06)
  • [8] 3D printed functional nanomaterials for electrochemical energy storage
    Zhu, Cheng
    Liu, Tianyu
    Qian, Fang
    Chen, Wen
    Chandrasekaran, Swetha
    Yao, Bin
    Song, Yu
    Duoss, Eric B.
    Kuntz, Joshua D.
    Spadaccini, Christopher M.
    Worsley, Marcus A.
    Li, Yat
    [J]. NANO TODAY, 2017, 15 : 107 - 120
  • [9] 3D Graphene Composites for Efficient Electrochemical Energy Storage
    Bu, Fanxing
    Shakir, Imran
    Xu, Yuxi
    [J]. ADVANCED MATERIALS INTERFACES, 2018, 5 (15):
  • [10] 3D-printed interdigital electrodes for electrochemical energy storage devices
    Renpeng Chen
    Yiming Chen
    Lin Xu
    Yu Cheng
    Xuan Zhou
    Yuyang Cai
    Liqiang Mai
    [J]. Journal of Materials Research, 2021, 36 : 4489 - 4507