Learning gradients by a gradient descent algorithm

被引:22
|
作者
Dong, Xuemei [2 ]
Zhou, Ding-Xuan [1 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
关键词
learning algorithm; stochastic gradient descent; variable selection; reproducing kernel Hilbert space; error analysis;
D O I
10.1016/j.jmaa.2007.10.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a stochastic gradient descent algorithm for learning the gradient of a regression function from random samples of function values. This is a learning algorithm involving Mercer kernels. By a detailed analysis in reproducing kernel Hilbert spaces, we provide some error bounds to show that the gradient estimated by the algorithm converges to the true gradient, under some natural conditions on the regression function and suitable choices of the step size and regularization parameters. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1018 / 1027
页数:10
相关论文
共 50 条
  • [1] A gradient descent algorithm built on approximate discrete gradients
    Moreschini, Alessio
    Mattioni, Mattia
    Monaco, Salvatore
    Normand-Cyrot, Dorothee
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 343 - 348
  • [2] Learning gradients via an early stopping gradient descent method
    Guo, Xin
    [J]. JOURNAL OF APPROXIMATION THEORY, 2010, 162 (11) : 1919 - 1944
  • [3] Learning rates of gradient descent algorithm for classification
    Dong, Xue-Mei
    Chen, Di-Rong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) : 182 - 192
  • [4] Learning to learn by gradient descent by gradient descent
    Andrychowicz, Marcin
    Denil, Misha
    Colmenarejo, Sergio Gomez
    Hoffman, Matthew W.
    Pfau, David
    Schaul, Tom
    Shillingford, Brendan
    de Freitas, Nando
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [5] Network Gradient Descent Algorithm for Decentralized Federated Learning
    Wu, Shuyuan
    Huang, Danyang
    Wang, Hansheng
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) : 806 - 818
  • [6] A gradient descent learning algorithm for fuzzy neural networks
    Feuring, T
    Buckley, JJ
    Hayashi, Y
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 1136 - 1141
  • [7] Kernel gradient descent algorithm for information theoretic learning
    Hu, Ting
    Wu, Qiang
    Zhou, Ding-Xuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2021, 263
  • [8] Learning to Learn without Gradient Descent by Gradient Descent
    Chen, Yutian
    Hoffman, Matthew W.
    Colmenarejo, Sergio Gomez
    Denil, Misha
    Lillicrap, Timothy P.
    Botvinick, Matt
    de Freitas, Nando
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [9] A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
    Le Lan, Charline
    Greaves, Joshua
    Farebrother, Jesse
    Rowland, Mark
    Pedregosa, Fabian
    Agarwal, Rishabh
    Bellemare, Marc
    [J]. arXiv, 2022,
  • [10] Internal Calibration System Using Learning Algorithm With Gradient Descent
    Jung, Chan-Yong
    Bae, Kyung-Bin
    Kim, Dong-Chan
    Park, Seong-Ook
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1503 - 1507