Online RGB-D Gesture Recognition with Extreme Learning Machines

被引:29
|
作者
Chen, Xi [1 ]
Koskela, Markus [1 ]
机构
[1] Aalto Univ, Sch Sci, Dept Informat & Comp Sci, POB 15400, FI-00076 Aalto, Finland
关键词
Online gesture recognition; extreme learning machine; RGB-D; skeleton model; HOG;
D O I
10.1145/2522848.2532591
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Gesture recognition is needed in many applications such as human-computer interaction and sign language recognition. The challenges of building an actual recognition system do not lie only in reaching an acceptable recognition accuracy but also with requirements for fast online processing. In this paper, we propose a method for online gesture recognition using RGB-D data from a Kinect sensor. Frame-level features are extracted from RGB frames and the skeletal model obtained from the depth data, and then classi fied by multiple extreme learning machines. The outputs from the classi fiers are aggregated to provide the final classi fication results for the gestures. We test our method on the ChaLearn multi-modal gesture challenge data. The results of the experiments demonstrate that the method can perform effective multi-class gesture recognition in real-time.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 50 条
  • [1] Localized Deep Extreme Learning Machines for Efficient RGB-D Object Recognition
    Zaki, Hasan F. M.
    Shafait, Faisal
    Mian, Ajmal
    [J]. 2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 489 - 496
  • [2] Hand Gesture Recognition using RGB-D Cues
    Lin, Lan
    Cong, Yang
    Tang, Yandong
    [J]. PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 311 - 316
  • [3] GL-PAM RGB-D GESTURE RECOGNITION
    Li, Benchao
    Li, Wanhua
    Tang, Yongyi
    Hu, Jian-Fang
    Zheng, Wei-Shi
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3109 - 3113
  • [4] Unsupervised Learning Based Static Hand Gesture Recognition from RGB-D Sensor
    Verma, Bindu
    Choudhary, Ayesha
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 304 - 314
  • [5] Towards a Professional Gesture Recognition with RGB-D from Smartphone
    Monivar, Pablo Vicente
    Manitsaris, Sotiris
    Glushkova, Alina
    [J]. COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 234 - 244
  • [6] Static Gesture Recognition Based on RGB-D Depth Information
    Wang, Yi
    Dong, Xiucheng
    Li, Changlong
    Yu, Ximu
    [J]. ADVANCES IN COMPUTERS, ELECTRONICS AND MECHATRONICS, 2014, 667 : 248 - +
  • [7] Static Hand Gesture Recognition Using RGB-D Data
    Elboushaki, Abdessamad
    Hannane, Rachida
    Afdel, Karim
    Koutti, Lahcen
    [J]. Networked Systems, NETYS 2016, 2016, 9944 : 381 - 381
  • [8] Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural Networks
    Khari, Manju
    Garg, Aditya Kumar
    Gonzalez Crespo, Ruben
    Verdu, Elena
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2019, 5 (07): : 22 - 27
  • [9] Sparse Representation Based Approach for RGB-D Hand Gesture Recognition
    Su, Te-Feng
    Fan, Chin-Yun
    Lin, Meng-Hsuan
    Lai, Shang-Hong
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT II, 2015, 9315 : 564 - 570
  • [10] RGB-D static gesture recognition based on convolutional neural network
    Xie, Bin
    He, Xiaoyu
    Li, Yi
    [J]. JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1515 - 1520