Maneuver tracking using an adaptive Gaussian sum technique

被引:0
|
作者
Stubberud, SC [1 ]
Kramer, KA [1 ]
机构
[1] Boeing Co, Anaheim, CA 92805 USA
关键词
target tracking; maneuvers; function approximation; adaptation; Gaussian sum;
D O I
10.1117/12.601106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The best method to track through a maneuver is to know the motion model of the maneuvering target. Unfortunately, a priori knowledge of the maneuver is not usually known. If the motion model of the maneuver can be estimated quickly from the measurements then the resulting track estimate will be better than the a priori static model. An adaptive function approximation technique to improve the motion model while tracking is analyzed for its potential to track through various maneuvers. The basic function approximation technique is that of a Gaussian sum. The Gaussian sum approximates the function which represents the error between the initial static model and the actual model of the maneuver. The parameters of the Gaussian sum are identified on-line using a Kalman filter identification scheme. This scheme, used in conjunction with a Kalman filter tracker, creates a coupled technique that can improve the motion model quickly. This adaptive Gaussian sum approach to maneuver tracking has its performance analyzed for three maneuvers. These maneuvers include a maneuvering ballistic target, a target going through an s-curve, and real target with a multiple racetrack flight path. The results of these test cases demonstrate the capabilities of this approach to track maneuvering targets.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 50 条
  • [1] An adaptive Gaussian sum approach for maneuver tracking
    Kramer, Kathleen A.
    Stubberud, Stephen C.
    2005 IEEE AEROSPACE CONFERENCE, VOLS 1-4, 2005, : 2083 - 2091
  • [2] An adaptive Gaussian sum algorithm for radar tracking
    Tam, WI
    Hatzinakos, D
    ICC'97: 1997 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - TOWARDS THE KNOWLEDGE MILLENNIUM, CONFERENCE RECORD - VOLS 1-3, 1997, : 1351 - 1355
  • [3] An adaptive Gaussian sum algorithm for radar tracking
    Tam, WI
    Plataniotis, KN
    Hatzinakos, D
    SIGNAL PROCESSING, 1999, 77 (01) : 85 - 104
  • [4] Adaptive Gaussian Sum Filters for Space Surveillance Tracking
    Joshua T. Horwood
    Nathan D. Aragon
    Aubrey B. Poore
    The Journal of the Astronautical Sciences, 2012, 59 (1-2) : 308 - 326
  • [5] ADAPTIVE GAUSSIAN SUM FILTERS FOR SPACE SURVEILLANCE TRACKING
    Norwood, Joshua T.
    Aragon, Nathan D.
    Poore, Aubrey B.
    KYLE T. ALFRIEND ASTRODYNAMICS SYMPOSIUM, 2011, 139 : 327 - 344
  • [6] Adaptive Gaussian Sum Filters for Space Surveillance Tracking
    Horwood, Joshua T.
    Aragon, Nathan D.
    Poore, Aubrey B.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2012, 59 (1-2): : 315 - 333
  • [7] Spacecraft Attitude Estimation Using Adaptive Gaussian Sum Filter
    Jemin George
    Gabriel Terejanu
    Puneet Singla
    The Journal of the Astronautical Sciences, 2009, 57 : 31 - 45
  • [8] Spacecraft Attitude Estimation Using Adaptive Gaussian Sum Filter
    George, Jemin
    Terejanu, Gabriel
    Singla, Puneet
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2009, 57 (1-2): : 31 - 45
  • [9] Target tracking with adaptive sampling intervals using Multiple Maneuver Model
    Yanbe, A
    Ito, M
    Tsujimichi, S
    Kosuge, Y
    SICE 2001: PROCEEDINGS OF THE 40TH SICE ANNUAL CONFERENCE, INTERNATIONAL SESSION PAPERS, 2001, : 271 - 276
  • [10] Gaussian Hermitian particle filter for maneuver target tracking
    School of Electronics and In formation, Jiangsu Univ. of Science and Technology, Zhenjiang 212003, China
    不详
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2007, 10 (1596-1599):