Recent Developments on Thermo-Mechanical Simulations of Ductile Failure by Meshfree Method

被引:0
|
作者
Ren, B. [1 ,2 ]
Qian, J. [1 ]
Zeng, X. [1 ]
Jha, A. K. [3 ]
Xiao, S. [4 ]
Li, S. [1 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[2] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
[3] NextGen Aeronaut, Torrance, CA 90505 USA
[4] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA
[5] Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan 430074, Peoples R China
来源
关键词
meshfree; thermo-mechanical; ductile failure; adiabatic shear band; crack; spall fracture; LOADED PRENOTCHED PLATES; PROPAGATING SHEAR BANDS; GALERKIN MLPG APPROACH; SPALL FRACTURE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ductile failure is a complex multi-scale phenomenon evolved from the micro-voids to macro-crack. There are three main failure mechanisms behinds a ductile failure: adiabatic shear band (ASB), spall fracture, and crack. Since this type of thermo-mechanical phenomena involves large deformation and large scale plastic yielding, a meshfree method has intrinsic advantages in solving this kind of problems over the conventional finite element method. In this paper, the numerical methodologies including multi-physics approach for ASB, parametric visibility condition for crack propagation, and multi-scale approach to determine spall strength in simulating ductile failure have been reviewed. A thermo-mechanical coupling algorithm is proposed to incorporate reproducing kernel particle method (RPKM) with rate dependent Johnson-Cook model. Numerical simulations demonstrate that this meshfree method can capture the essential features of a ductile failure.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 50 条
  • [1] Meshfree simulations of thermo-mechanical ductile fracture
    Simkins, D. C.
    Li, S.
    [J]. COMPUTATIONAL MECHANICS, 2006, 38 (03) : 235 - 249
  • [2] Meshfree simulations of thermo-mechanical ductile fracture
    D. C. Simkins
    S. Li
    [J]. Computational Mechanics, 2006, 38 : 235 - 249
  • [3] A meshfree variational multiscale methods for thermo-mechanical material failure
    Wang, H. S.
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2015, 75 : 1 - 7
  • [4] Recent developments in thermo-mechanical processing of proteinous bioplastics
    Verbeek, Casparus J.R.
    van den Berg, Lisa E.
    [J]. Recent Patents on Materials Science, 2009, 2 (03) : 171 - 189
  • [5] Special Issue: Recent developments in thermo-mechanical fatigue
    Klingelhoeffer, Hellmuth
    Affeldt, Ernst
    Bache, Martin
    Bartsch, Marion
    Beck, Tilmann
    Christ, H. J.
    Fedelich, Bernard
    Haehner, Peter
    Holdsworth, Stuart R.
    Lang, Karl-Heinz
    McGaw, Mike
    Olbricht, Juergen
    Remy, Luc
    Skrotzki, Birgit
    Stekovich, Svjetlana
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2017, 99 : 215 - 215
  • [6] Thermo-mechanical processing and properties of a ductile iron
    Syn, CK
    Lesuer, DR
    Sherby, OD
    [J]. THERMOMECHANICAL PROCESSING AND MECHANICAL PROPERTIES OF HYPEREUTECTOID STEELS AND CAST IRONS, 1996, : 117 - 125
  • [7] A thermo-mechanical cohesive zone formulation for ductile fracture
    Fagerstrom, M.
    Larsson, R.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (10) : 3037 - 3058
  • [8] Thermo-mechanical Simulations of an Open Tungsten TSV
    Singulani, Anderson P.
    Ceric, Hajdin
    Selberherr, Siegfried
    [J]. PROCEEDINGS OF THE 2012 IEEE 14TH ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE, 2012, : 107 - 111
  • [9] Modeling brittle-ductile failure transition with meshfree method
    Wang, S.
    Liu, H.
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2010, 37 (07) : 783 - 791
  • [10] A practical meshfree inverse method for identification of thermo-mechanical fracture load of a body by examining the crack path in the body
    Liaghat, F.
    Khosravifard, A.
    Hematiyan, M. R.
    Rabczuk, T.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 133 : 236 - 247