Real-Time Monitoring of College Sports Dance Competition Scenes Using Deep Learning Algorithms

被引:0
|
作者
Yang, Fei [1 ,2 ]
Wu, GeMuZi [2 ]
Shan, HongGang [2 ]
机构
[1] Namseoul Univ, Grad Sch, Cheonan, South Korea
[2] Hebei Inst Phys Educ, Dept Sports Art, Shijiazhuang, Hebei, Peoples R China
关键词
Learning algorithms - Learning systems - Sports;
D O I
10.1155/2022/1723740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the real-time detection effect, therefore, a research on real-time scene detection of sports dance competition based on deep learning is proposed. The collected scene image is grayed by using the weighted average method, and the best image interpolation is calculated by using the deep learning method, so as to realize the smooth processing of sawtooth and mosaic information generated by panoramic mapping. After selecting the cube model, the processed scene information is projected to the visual plane to construct the panorama of the competition scene. Finally, combined with the three-frame difference, the changes between adjacent image frames are calculated to obtain the moving target. The test results show that the motion detection accuracy of professional dancers can reach more than 75.0% and that of amateur dancer can reach more than 64.2%.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Real-Time Emotion Recognition Using Deep Learning Algorithms
    El Mettiti, Abderrahmane
    Oumsis, Mohammed
    Chehri, Abdellah
    Saadane, Rachid
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [2] Real-time sports injury monitoring system based on the deep learning algorithm
    Ren, Luyao
    Wang, Yanyan
    Li, Kaiyong
    BMC MEDICAL IMAGING, 2024, 24 (01):
  • [3] Real-time Driver Monitoring using Facial Landmarks and Deep Learning
    Joshi, Soham
    Venugopalan, Shankaran
    Kumar, Animesh
    Kukade, Shweta
    Lodha, Mokshit
    Motade, Sumitra
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [4] Real-time monitoring of concrete crack based on deep learning algorithms and image processing techniques
    Xu, Gang
    Yue, Qingrui
    Liu, Xiaogang
    ADVANCED ENGINEERING INFORMATICS, 2023, 58
  • [5] Comparisons of Deep Learning Algorithms for MNIST in Real-Time Environment
    Palvanov, Akmaljon
    Cho, Young Im
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2018, 18 (02) : 126 - 134
  • [6] Evaluating Deep Learning Algorithms for Real-Time Arrhythmia Detection
    Petty, Tyler
    Vu, Thong
    Zhao, Xinghui
    Hirsh, Robert A.
    Murray, Greggory
    Haas, Francis M.
    Xue, Wei
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 19 - 26
  • [7] Design of a real-time crime monitoring system using deep learning techniques
    Mukto, Md. Muktadir
    Hasan, Mahamudul
    Al Mahmud, Md. Maiyaz
    Haque, Ikramul
    Ahmed, Md. Ahsan
    Jabid, Taskeed
    Ali, Md. Sawkat
    Rashid, Mohammad Rifat Ahmmad
    Islam, Mohammad Manzurul
    Islam, Maheen
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 21
  • [8] Real-time monitoring system of cyanobacteria blooms using deep learning approach
    LiFang Chen
    Yu Shi
    YuanXin Du
    Multimedia Tools and Applications, 2022, 81 : 42413 - 42431
  • [9] Sleep Deprivation Detection for Real-Time Driver Monitoring Using Deep Learning
    Garcia-Garcia, Miguel
    Caplier, Alice
    Rombaut, Michele
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 435 - 442
  • [10] DEEP LEARNING DRIVEN REAL-TIME AIRSPACE MONITORING USING SATELLITE IMAGERY
    Singh, Anirudh
    Kumar, Satyam
    Choudhury, Deepjyoti
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (06): : 5672 - 5687