Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method

被引:3
|
作者
Halliday, I. [1 ]
Lishchuk, S. V. [1 ]
Spencer, T. J. [1 ]
Pontrelli, G. [2 ]
Evans, P. C. [3 ,4 ]
机构
[1] Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sheffield, Sch Med, Dept Cardiovasc Sci, Beech Hill Rd, Sheffield S10 2RX, S Yorkshire, England
[4] Univ Sheffield, Sch Med, Insigneo Inst Sil Med, Beech Hill Rd, Sheffield S10 2RX, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
RED-BLOOD-CELLS; FLOW; DYNAMICS;
D O I
10.1103/PhysRevE.94.023306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Kruger, S. Frijters, F. Gunther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)] and underscore the importance of a correct vesicle membrane condition.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Simulation of two-dimensional oscillating flow using the lattice Boltzmann method
    Wang, Y.
    He, Y. L.
    Tang, G. H.
    Tao, W. Q.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (05): : 615 - 630
  • [2] Three-dimensional single framework multicomponent lattice Boltzmann equation method for vesicle hydrodynamics
    Spendlove, J.
    Xu, X.
    Schenkel, T.
    Seaton, M. A.
    Halliday, I
    Gunn, J. P.
    [J]. PHYSICS OF FLUIDS, 2021, 33 (07)
  • [3] Lattice Boltzmann method for one and two-dimensional Burgers equation
    Zhang, Jianying
    Yan, Guangwu
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (19-20) : 4771 - 4786
  • [4] A lattice Boltzmann method for two-dimensional convection-diffusion equation
    Liu, MR
    Chen, RH
    Li, HB
    Kong, LJ
    [J]. ACTA PHYSICA SINICA, 1999, 48 (10) : 1800 - 1803
  • [5] Simulation of two-dimensional decaying turbulence using the "incompressible" extensions of the lattice Boltzmann method
    Házi, G
    Jiménez, C
    [J]. COMPUTERS & FLUIDS, 2006, 35 (03) : 280 - 303
  • [6] Lattice Boltzmann equation on a two-dimensional rectangular grid
    Bouzidi, M
    d'Humières, D
    Lallemand, P
    Luo, LS
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) : 704 - 717
  • [7] Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows
    Lallemand, Pierre
    Luo, Li-Shi
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407 (407)
  • [8] Two-dimensional numerical simulation of channel flow with submerged obstacles using the lattice Boltzmann method
    Cargnelutti, J.
    Galina, V.
    Kaviski, E.
    Gramani, L. M.
    Lobeiro, A. M.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [9] Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method
    Ryu, Seungyeob
    Ko, Sungho
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2012, 248 : 248 - 262
  • [10] Numerical Simulation of Two-Dimensional Bluff Body Aerodynamic Noise Using Lattice Boltzmann Method
    Han, Shanling
    Wang, Guishen
    Yu, Lisha
    Wang, Yuyue
    [J]. PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 2535 - 2538