Quantum-inspired evolutionary tuning of SVM parameters

被引:22
|
作者
Luo, Zhiyong [1 ]
Wang, Ping [1 ]
Li, Yinguo [1 ]
Zhang, Wenfeng [2 ]
Tang, Wei [2 ]
Xiang, Min [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Automat, Chongqing 400065, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
关键词
quantum-inspired evolutionary algorithm (QEA); parameters tuning; support vector machines (SVM); least squares support vector machines (LS-SVM);
D O I
10.1016/j.pnsc.2007.11.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The most commonly used parameters selection method for support vector machines (SVM) is cross-validation, which needs a longtime complicated calculation. In this paper, a novel regularization parameter and a kernel parameter tuning approach of SVM are presented based on quantum-inspired evolutionary algorithm (QEA). QEA with quantum chromosome and quantum mutation has better global search capacity. The parameters of least squares support vector machines (LS-SVM) can be adjusted using quantum-inspired evolutionary optimization. Classification and function estimation are studied using LS-SVM with wavelet kernel and Gaussian kernel. The simulation results show that the proposed approach can effectively tune the parameters of LS-SVM, and the improved LS-SVM with wavelet kernel can provide better precision. (C) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [1] Quantum-inspired evolutionary tuning of SVM parameters
    Zhiyong Luo a
    [J]. Progress in Natural Science:Materials International, 2008, (04) : 475 - 480
  • [2] WAVELET SVM ENSEMBLE FOR PATTERN CLASSIFICATION WITH QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM
    Luo, Zhi-Yong
    Zhang, Wen-Feng
    Ye, Bin-Yuan
    Cai, Lin-Qin
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1 AND 2, 2008, : 485 - +
  • [3] On setting the parameters of quantum-inspired evolutionary algorithm for practical applications
    Han, KH
    Kim, JH
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 178 - 184
  • [4] Parameters Optimization of ANFIS using Quantum-inspired Evolutionary Algorithm
    Qian Xiaoyi
    Zhang Yuxian
    Awad, Mohammed Altayeb
    Li Yong
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 1068 - 1073
  • [5] A Quantum-inspired Evolutionary Clustering Algorithm
    Tsai, Chun-Wei
    Liao, Yu-Hsun
    Chiang, Ming-Chao
    [J]. 2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013), 2013, : 305 - 310
  • [6] The immune quantum-inspired evolutionary algorithm
    Li, Y
    Zhang, YN
    Zhao, RC
    Jiao, LC
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 3301 - 3305
  • [7] Quantum-Inspired Immune Evolutionary Algorithm
    Zhang Xiangxian
    [J]. ISBIM: 2008 INTERNATIONAL SEMINAR ON BUSINESS AND INFORMATION MANAGEMENT, VOL 1, 2009, : 323 - 325
  • [8] Quantum-Inspired Acromyrmex Evolutionary Algorithm
    Oscar Montiel
    Yoshio Rubio
    Cynthia Olvera
    Ajelet Rivera
    [J]. Scientific Reports, 9
  • [9] Analysis of quantum-inspired evolutionary algorithm
    Han, KH
    Kim, JH
    [J]. IC-AI'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS I-III, 2001, : 727 - 730
  • [10] Quantum-Inspired Acromyrmex Evolutionary Algorithm
    Montiel, Oscar
    Rubio, Yoshio
    Olvera, Cynthia
    Rivera, Ajelet
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)