On new Properties of the Maiorana-McFarland Ternary Bent Functions

被引:2
|
作者
Moraga, Claudio [1 ,2 ]
Stankovic, Radomir S. [3 ,4 ]
Stankovic, Milena [3 ]
机构
[1] TU Dortmund Univ, Fac Comp Sci, D-44221 Dortmund, Germany
[2] Univ Tecn Federico Santa Maria, Dept Informat, Valparaiso, Chile
[3] Fac Elect Engn, Dept Comp Sci, Nish 18000, Serbia
[4] Serbian Acad Arts & Sci, Math Inst, Belgrade 11000, Serbia
关键词
Maiorana-McFarland bent functions; spectral invariant operations; generalized self-duality;
D O I
10.1109/ISMVL52857.2022.00038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maiorana-McFarland ternary bent functions are analyzed with respect to their relationship with spectral invariant operations and with respect to self-duality. In analogy to the Maiorana-McFarland method to generate binary bent functions, an equation is introduced to generate ternary bent functions in an even number of variables. It is shown that Maiorana-McFarland ternary bent functions are strict bent and that their duals may not be Maiorana-McFarland. It is known that spectral invariant operations preserve the bentness of a function. We show that most spectral invariant operations preserve that Maiorana-McFarland bentness of ternary functions. The concept of generalized self-duality is introduced and it is shown how Maiorana-McFarland ternary bent functions exhibit this kind of self-duality. It is shown that Maiorana-McFarland ternary bent functions in two variables may be divided into 3 classes of 54 functions each. A list of these functions for a first class is given in an Appendix.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 50 条
  • [1] The ranks of Maiorana-McFarland bent functions
    WENG GuoBiao
    [J]. Science China Mathematics, 2008, (09) : 1726 - 1731
  • [2] The ranks of Maiorana-McFarland bent functions
    GuoBiao Weng
    RongQuan Feng
    WeiSheng Qiu
    ZhiMing Zheng
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1726 - 1731
  • [3] The ranks of Maiorana-McFarland bent functions
    Weng GuoBiao
    Feng RongQuan
    Qiu WeiSheng
    Zheng ZhiMing
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09): : 1726 - 1731
  • [4] Generalized Bent Functions and their Relation to Maiorana-McFarland Class
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Kholosha, Alexander
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [5] On the confusion and diffusion properties of Maiorana-McFarland's and extended Maiorana-McFarland's functions
    Carlet, C
    [J]. JOURNAL OF COMPLEXITY, 2004, 20 (2-3) : 182 - 204
  • [6] Cubic bent functions outside the completed Maiorana-McFarland class
    Polujan, Alexandr A.
    Pott, Alexander
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1701 - 1722
  • [7] Cubic bent functions outside the completed Maiorana-McFarland class
    Alexandr A. Polujan
    Alexander Pott
    [J]. Designs, Codes and Cryptography, 2020, 88 : 1701 - 1722
  • [8] A note on the algebraic immunity of the Maiorana-McFarland class of bent functions
    Wang, Qichun
    Tan, Chik How
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 869 - 871
  • [9] On communication complexity of bent functions from Maiorana-McFarland class
    Marchenko, A.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 730 - 733
  • [10] Affine inequivalence of cubic Maiorana-McFarland type bent functions
    Gangopadhyay, Sugata
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1141 - 1146