Distribution of a Certain Partition Function Modulo Powers of Primes

被引:29
|
作者
Chan, Hei-Chi [1 ]
机构
[1] Univ Illinois, Dept Math Sci, Springfield, IL 62703 USA
关键词
Distribution of partition function; Ono's theorem; Ramanujan's congruences; CONGRUENCES; CRANK; FORMS;
D O I
10.1007/s10114-011-8620-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a certain partition function a(n) defined by Sigma(n >= 0) a(n) q(n) := Pi(n=1) (1 - q(n))(-1) (1 - q(2n))(-1). We prove that given a positive integer j >= 1 and a prime m >= 5, there are infinitely many congruences of the type a(An + B) 0 (mod m(j)). This work is inspired by Ono's ground breaking result in the study of the distribution of the partition function p(n).
引用
收藏
页码:625 / 634
页数:10
相关论文
共 50 条