Electricity generation from tetrathionate in microbial fuel cells by acidophiles

被引:47
|
作者
Sulonen, Mira L. K. [1 ]
Kokko, Marika E. [1 ]
Lakaniemi, Aino-Maija [1 ]
Puhakka, Jaakko A. [1 ]
机构
[1] Tampere Univ Technol, Dept Chem & Bioengn, FIN-33101 Tampere, Finland
关键词
Microbial fuel cell; Tetrathionate; Electricity; Acidophile; Reduced inorganic sulfur compound; INORGANIC SULFUR-COMPOUNDS; ACID-MINE DRAINAGE; OXIDIZING BACTERIA; METAL EXTRACTION; SP-NOV; OXIDATION; PERFORMANCE; WATER; IRON; PART;
D O I
10.1016/j.jhazmat.2014.10.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:182 / 189
页数:8
相关论文
共 50 条
  • [1] Sustainable Electricity Generation from Continuous Microbial Fuel Cells
    Chinnaraj, Ganesh
    Ponnaiah, Gomathi Priya
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 884 - 891
  • [2] Electricity generation from rice bran in microbial fuel cells
    Takahashi S.
    Miyahara M.
    Kouzuma A.
    Watanabe K.
    Bioresources and Bioprocessing, 3 (1)
  • [3] Electricity generation from rice bran in microbial fuel cells
    School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo
    192-0392, Japan
    不详
    Tokyo
    141-8616, Japan
    Bioresour. Bioprocess., 1600, 1
  • [4] Electricity generation using microbial fuel cells
    Mohan, Y.
    Kumar, S. Manoj Muthu
    Das, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 423 - 426
  • [5] Novel trickling microbial fuel cells for electricity generation from wastewater
    Gao N.
    Fan Y.
    Long F.
    Qiu Y.
    Geier W.
    Liu H.
    Chemosphere, 2020, 248
  • [6] Electricity generation from swine wastewater using microbial fuel cells
    Min, B
    Kim, JR
    Oh, SE
    Regan, JM
    Logan, BE
    WATER RESEARCH, 2005, 39 (20) : 4961 - 4968
  • [7] Novel trickling microbial fuel cells for electricity generation from wastewater
    Gao, Ningshengjie
    Fan, Yanzhen
    Long, Fei
    Qiu, Yu
    Geier, Wil
    Liu, Hong
    CHEMOSPHERE, 2020, 248
  • [8] Electricity generation from glucose by a Klebsiella sp in microbial fuel cells
    Xia, Xue
    Cao, Xiao-xin
    Liang, Peng
    Huang, Xia
    Yang, Su-ping
    Zhao, Gen-gui
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (01) : 383 - 390
  • [9] Electricity generation from cellulose by rumen microorganisms in microbial fuel cells
    Rismani-Yazdi, Hamid
    Christy, Ann D.
    Dehority, Burk A.
    Morrison, Mark
    Yu, Zhongtang
    Tuovinen, Olli H.
    BIOTECHNOLOGY AND BIOENGINEERING, 2007, 97 (06) : 1398 - 1407
  • [10] Electricity generation from food wastes and microbial community structure in microbial fuel cells
    Jia, Jianna
    Tang, Yu
    Liu, Bingfeng
    Wu, Di
    Ren, Nanqi
    Xing, Defeng
    BIORESOURCE TECHNOLOGY, 2013, 144 : 94 - 99